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Abstract. Linear problems in mathematical physics where the adiabatic approximation is used in a wide sense
are studied. From the idea that all these problems can be treated as problems with an operator-valued symbol,
a general regular scheme of adiabatic approximation based on operator methods is proposed. This scheme is a
generalization of the Born–Oppenheimer and Maslov methods, the Peierls substitution, etc. The approach pro-
posed in this paper allows one to obtain “effective” reduced equations for a wide class of states inside terms
(i.e., inside modes, subbands of dimensional quantization, etc.) with possible degeneration taken into account.
Next, by application of asymptotic methods, in particular the semiclassical approximation method, to the reduced
equation, the states corresponding to a distinguished term (effective Hamiltonian) can be classified. It is shown
that the adiabatic effective Hamiltonian and the semiclassical Hamiltonian can be different, which results in the
appearance of “nonstandard characteristics” while passing to classical mechanics. This approach is used to con-
struct solutions of several problems in wave and quantum mechanics, particularly problems in molecular physics,
solid-state physics, nanophysics and hydrodynamics.

Key words: adiabatic and semiclassical approximation, Born–Oppenheimer method, electron-phonon interaction,
interval waves, Maslov operator methods, nanofilms, picnocline

1. Introduction

Many linear problems in mathematical and theoretical physics contain different spatio-temporal
scales. Among them there are problems in molecular physics, problems concerning electron waves
in crystals, wave propagation in media with rapidly varying characteristics, surface and inter-
nal waves in fluids, electron-phonon interaction, electromagnetic waves and quantum particles
propagating in waveguides, etc. The main instruments for investigating such problems are con-
tained in the adiabatic approximation, which is based on the idea of separating “fast” and
“slow” modes by means of “freezing” the slowly varying variables. For instance, the “slow”
variables describe the nuclear motion in molecules and the “fast” variables concern the elec-
tron motion, or the “slow” variables describe the longitudinal motion and the “fast” variables
describe the transverse motion in thin waveguides. Needless to say that there are many differ-
ent versions of adiabatic approximation and thousands of papers and monographs related to
this approach and its applications in different fields of mechanics and physics. Among these
we mention [1–10]. Nevertheless, we take the liberty to present a general regular scheme of the
adiabatic approximation suggested in [11–13] and combine different approaches including the
Born–Oppenheimer method, the Maslov operator method, the Peierls substitution, etc. From
a mathematical point of view, the equations (or the system of equations) describing all these
phenomena have the same structure. Namely, following [6], these equations (systems) can be
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treated as equations with an “operator-valued symbol.” Our idea to study such equations is
not new: the asymptotic analysis of the original problem can be divided into two parts: (1)
the “operator” reduction to simpler differential or pseudodifferential equations with the prin-
cipal symbol, known in different fields of physics as an effective Hamiltonian, or therm, or
dispersion relation, or mode, etc., and with corrections to this symbol; (2) asymptotic con-
structions of the solutions of this simpler reduced equation based on different variants of the
semiclassical approaches, like the WKB-method, Born approximation, oscillatory approxima-
tions, ray expansions, the Maslov canonical operator, averaging, etc. Here we present the first
part of this concept in the form of a regular rigorous algorithm (in Section 3), based on oper-
ator methods [14].

The result of the first step is the reduced equation; it has different names in different fields
of physics; we call it the effective equation of adiabatic motion. We illustrate the “operator”
reduction or the “operator separation” of variables by using the above-mentioned problems
from different fields of physics and, in Section 4, present the corresponding equations for
the wave functions of adiabatic motion. The examples given in Sections 4.1–4.4 were stud-
ied long ago, whereas the results of Sections 4.5–4.6 (as well as Section 5) were obtained by
the authors recently.

To realize the second step, it is necessary to take into account that usually the original
problem includes several parameters. Some of these, like the transverse and longitudinal char-
acteristic sizes of a waveguide or the ratio between the masses of light and heavy particles,
allow one to use the adiabatic approximation and do not crucially correlate with the energy of
adiabatic motion. Other parameters, like the magnitudes of the external electromagnetic field,
the momentum of the incoming wave in the scattering problem, etc., determine the energy.
This fact implies different forms of (asymptotic) wave functions of adiabatic motion and, as
a consequence, a redefinition of the principal symbol and the effective Hamiltonians depend-
ing on the relations between the above-mentioned parameters. In turn, it gives different types
of characteristics (trajectories of Hamiltonian systems) which Maslov [15] called “nonstandard
characteristics” and which must be used in asymptotic constructions. We discuss the possible
classification of these characteristics using, as the main example, the quantum-wave propaga-
tion in thin (or nano) tubes. In spite of the fact that the given arguments seem to be natu-
ral, and in some way appear in the physical literature, they do not seem to have been applied
systematically. The methods for constructing asymptotic or exact solutions of the “redefined”
equation for the wave functions of adiabatic motion are well known and here the results must
be connected with a concrete physical problem. Therefore, we do not construct asymptotic
solutions for most of the derived reduced equations and in Section 5 only briefly describe
different solutions for the equations of quantum particles in nanostructures.

The main results of the “operator separation of variables” are realized in Equations (3.5),
(3.7) and (3.11). Although they simply follow the Born–Oppenheimer approach or those of
Peierls and Maslov, nevertheless they allow us to consider a wide range of adiabatic prob-
lems uniformly and in a rather compact form. We believe that this approach is very useful in
different situations, since it gives not only a general regular scheme for deriving the reduced
equations exactly but allows one to obtain qualitative and quantitative estimates of the range
of applicability of any approximation. Naturally, the argument resulting in Equations (3.5)
and (3.7), the classification of different approximations, the relations between the adiabatic
and semiclassical asymptotics, etc. can be better illustrated with a simple example. These con-
siderations, some of which are well known in physics and some of which are well known in
mathematics, are given in Section 2 and Sections 3.1–3.2. In Section 2, we present a minimal
amount of the required information from the operator calculus of noncommuting operators
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[14] (see also [16]). We point out that the facts from [14] used here are not simply arguments
of the “mathematical justification and verification” type, but are completely constructive and
developed algorithms that are well adjusted to the problems studied here.

Finally we can formulate the main result of the paper as follows. We suggest the regu-
lar asymptotic (adiabatic) procedure which allows one, (1) to determine correctly the lead-
ing part of asymptotic solution corresponding to wide diapason of energies (or frequencies),
(2) to construct and estimate if necessary the “adiabatic” corrections. Needless to say that
in this work we understand an asymptotic solution in the formal sense, i.e., in the sense of
small “right-hand side” (discrepancy). The proof of the fact that the constructed asymptotic
solution approximates some exact solution of the original equation is outside the scope of the
present study and we will touch upon this problem only very briefly.

2. Differential and pseudodifferential operators with a parameter and their symbols.
Elementary formulas from calculus of noncommuting operators

We want to study some asymptotic solutions of (systems of) partial differential equations with
small parameter µ in the configuration space with coordinates x= (x1, . . . , xN) which can be
written in general form:

i�t = Ĥ�. (2.1)

Here �(x, t) can be a scalar or vector function, H is a partial differential scalar or
matrix operator. It is convenient for us to present the operator H as a function of non-
commuting operators −i∂/∂x = (−i∂/∂x1, . . . ,−i∂/∂xN) and x = (x1, . . . , xN) and, gener-
ally speaking, of time t : Ĥ = H(−i∂/∂x1, . . . ,−i∂/∂xN, x1, . . . , xN , t), where the function
H(p1, . . . , pn, x1, . . . , xN , t) is usually called the symbol of the operator Ĥ. Actually, we shall
consider the situation in which the function H can depend on the parameter µ and also on
some other ones. Quite often a small parameter µ appears as a factor before the derivatives
∂/∂xj , say, before ∂/∂x1, . . . , ∂/∂xn, n≤N . It follows from the considerations given below
that there is always a parameter µ before ∂/∂t . We denote the other variables by y1, . . . , ym,
m=N −n. So finally Equation (2.1) takes the form

iµ�t =H
(

−iµ
∂

∂x1
, . . . ,−iµ

∂

∂xn
, x1, . . . , xn,−i

∂

∂y1
, . . . ,−i

∂

∂ym
, y1, . . . , ym, t,µ

)
�.

(2.2)

As the operators ∂/∂xj and xj , as well as operators ∂/∂yk and yk do not commute, one has
to agree about the order of action of xj and ∂/∂xj and, analogously, of yk and ∂/∂yk. The
theory of functions of noncommuting operators is very well developed [14]; see also [16–18].
For the sake of completeness, let us present a minimal amount of the required information
from operator calculus and recall the terminology.

First, let R(x,p)=∑l
k=0Rk(x)p

k be a polynomial in variables p with coefficients that are
smooth in x. This function generates the operator R̂ =∑l

k=0Rk(x)(−iµ ∂
∂x
)k. The function

R(x,p) is called the symbol of the differential operator R̂ with a parameter µ. It is clear that
the way of constructing the operator R̂ by means of the symbol R is not unique. For exam-
ple, one can build an operator R̂′ =∑l

k=0(−iµ ∂
∂x
)kRk(x), different from R̂. Using the Feyn-

man notation, we can write R̂=R(
1
p̂,

2
x) and R̂′ =R(

2
p̂,

1
x), where the numbers above p̂ and

x determine the order of their action. (About other ways of ordering, for instance, by Weyl,
see [14]). In this work, we will always use the first way of ordering. Under this agreement,
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the definition of the differential operator is equivalent to the definition of its symbol. By let-
ting the order of the polynomial k tend to infinity, one can obtain, at least, “naive” operators
whose symbols are not polynomials. Such operators are called pseudodifferential. Their rigor-
ous definition is given by means of the “µ-Fourier transform” [6, 14]:

A(
1
p̂,

2
x)ϕ(x)=Fµp→x [A(p, x)[Fµx→pϕ(x)](p)](x); (2.3)

here the direct and inverse “µ-Fourier transforms” Fµx→p and Fµp→x are defined by the equalities:

[Fµx→pϕ(x)](p)=
1

(2π iµ)n/2

∫
Rnx

e−i〈p,x〉/µϕ(x)dx,

[Fµp→xϕ̃(p)](x)=
1

(−2π iµ)n/2

∫
Rnp

ei〈p,x〉/µϕ̃(p)dp.

From now on, 〈, 〉 is the inner product in the Euclidean space of the corresponding dimension.
The replacement of operators by their symbols turns out to be very useful in practical

calculations. As a result, the calculations concerning operators are replaced by significantly
simpler work (which can be algorithmized) with symbols, i.e., functions (“with c-numbers”).
Since, in asymptotic approaches, defining an operator is practically equivalent to defining its
symbol, in the process of obtaining asymptotic formulas one can manipulate only with sym-
bols and “recall” the operators corresponding to these symbols only in studying refined problems
such as, for example, justification of the asymptotic accuracy of the solutions constructed. Of
course, the main difficulties in dealing with functions of operators arise due to the fact that
the operators p̂ and x do not commute. On the other hand, their commutator is iµ, and it
is small, which allows one to use asymptotic expansions in the constructions. In view of this
fact, it is natural to consider the symbols R depending on the parameter µ and to assume
that R(p, x,µ)=R0(p, x)+µR1(p, x)+ · · · . Moreover, the right-hand side in this relation is
understood as an asymptotic expansion in the parameter µ. The function R0(p, x) is called
the leading symbol or, sometimes, a Hamiltonian, and Rj are called j th-order corrections.

The next generalization consists in the assumption that the symbol of the operator R̂ may
be an operator. A simple example appears in the situation in which R(p, x,µ) is a matrix (or
an operator acting in a finite-dimensional space).

2.1. Example 1. The Klein–Gordon equation

Consider, for instance, the Klein–Gordon equation µ2ϕtt −µ2ϕxx+v(x)ϕ=0 written in vector

form for the vector function �=
(
�1

�2

)
=
(
ϕ

ϕt

)
:

iµ�t =H(−iµ∂/∂x, x)�, ⇔
{

iµ�1t =�2,

iµ�2t =v(x)�1 −µ2�1xx.
(2.4)

The symbol of the operator H(p, x) is the 2×2 matrix function

H(p, x)=
(

0 1
p2 +v(x) 0

)
.

From this viewpoint, one can consider many fundamental physical equations like the
Dirac and Pauli equations, the Lamé equation in linear elasticity theory, the linearized equa-
tions of hydrodynamics, etc. (If they include a small parameter in an appropriate way.) The
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appearance of a small parameter µ before the derivative ∂/∂x is very important in our con-
structions. As we have mentioned, there exist many problems with different scales in which a
small parameter appears only in front of some derivatives. Problems of such types give the
majority of nontrivial µ-differential operators with operator-valued symbols.

2.2. Example 2. Molecular physics

Consider, for instance, the Schrödinger equation for two groups of particles: heavy atomic
nuclei with mass M and light electrons with mass m. We denote the coordinates of nuclei
and electrons by x′ and y′, respectively. Let us assume that l0 is the linear size of a mol-
ecule and d0 is the amplitude of nuclear oscillations. Thus, the characteristic magnitude of
the electron energy is εe ∼ –h2/(2ml20). For physical reasons (stated by Born and Oppenhei-
mer), the motion of a nucleus could be considered in the oscillatory approximation and its
energy is εn ∼ –h2/(2Md2

0 )∼ kd2
0/2 with the elasticity coefficient k. To estimate k, one has to

remember that, in the adiabatic approximation, the potential energy of a nucleus is the total
energy of electrons [19], so k∼∂2εe/∂x

2 ∼–h2/(ml40). Thus we have –h2/(2Md2
0 )∼–h2d2

0/(2ml
4
0).

From this, we obtain d0/l0 ∼ (m/M)1/4. Oscillatory energies of nuclei and electrons relate as
εn/εe ∼ (m/M)(l20/d2

0 )∼ (m/M)1/2. Let us introduce the parameter µ= (m/M)1/2 and divide
both sides of the Schrödinger equation by –h2/(2ml20). After passage to dimensionless variables
x=x′/l0, y=y′/l0, the stationary Schrödinger equation takes the form

Ĥ�=E�, Ĥ=
(

−1
2
µ2�x − 1

2
�y +v(x, y)

)
: (2.5)

The symbol H of the µ-differential1 operator Ĥ is again the operator

H(p, x)= 1
2
p2 − 1

2
�y +v(x, y). (2.6)

Usually, x are called slow variables and y are called fast ones. Close approaches to the deter-
mination of electron states (terms) in a molecule can be found in [6, 8, 9, 20].

2.3. Example 3. Quantum 2-D waveguide

One encounters an equation with closed structure by considering a “narrow” straight quantum
waveguide. The word “narrow” means that the characteristic width of the waveguide d0 is much
smaller than its length l0. We introduce the small parameter µ=d0/l0. The dynamics of a spinless
quantum (quasi)particle in a plane waveguide is determined by the 2-D Schrödinger equation with
the potential v=v(x, y) inside the waveguide. Due to two different scales, there appear two differ-
ent characteristic energies: the characteristic energy of the lower transverse levels (which is usually
called the characteristic energy of the “transverse quantization”) and the characteristic longitudinal
energy ε‖. One can estimate ε⊥ from the uncertainty principle, which gives ε⊥ =–h2/(2md2

0 ). Let us
introduce dimensionless variables x′ =x/l0, y′ =y/d0, t= (µω⊥)−1, ω⊥ =ε⊥/–h and dimensionless
potentials v′ = v/ε⊥. Then the corresponding Schrödinger equation takes the form (we omit the
primes of the dimensionless variables):

iµ
∂�

∂t
= Ĥ�, Ĥ=

(
−µ

2

2
∂2

∂x2
− 1

2
∂2

∂y2
+v(x, y)

)
�. (2.7)

The symbol of the µ-differential operator is the operator (2.6) with �y = ∂2/∂y2.

1Born and Oppenheimer in their famous paper [1] used the parameter κ = √
µ, which is the ratio

d0/l0 ∼κ of the characteristic wavelength to the wave function and the linear size of the molecule.
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Generalizations of the plane quantum waveguide are quantum thin tubes (nanotubes) and
thin films (nanofilms), and their symbols are matrix-operators if one includes spin into con-
sideration. These more complicated examples, as well as several examples from other fields,
will be considered later.

Let us again stress that the definition of the symbol of a µ-differential operator differs from
the standard definition of the symbol of an operator without parameter. Namely, we construct
the symbol, taking only the slow variables into account. This is why the symbols of the µ-
differential operator Ĥ in Examples 2 and 3 are again differential operators acting in some
appropriate Hilbert space with coordinates y. The transition to µ-differential symbols is a for-
malization of the idea of “freezing the slow variables.” We discuss the related problems later.
The introduction of a small parameter µ formally ensures that the commutator [x, Ĥ] is small.
There is no universal interpretation of this fact; this depends on each concrete physical prob-
lem.

Let us also note that one can consider the equations from Examples 2 and 3 as infinite
vector ones. To show this, let us assume, for simplicity, that, for each x ∈R

n, the spectrum of
the operator −(1/2)∂2/∂y2 +v(x, y) is discrete and simple and that the corresponding eigen-
functions {wn(x, y)} and eigenvalues λn(x) depend smoothly on x. Then one can expand any
solution �(x, y, t) of Equation (2.7) in the Fourier series

�=
∑
k

wk(x, y)ψk(x, t). (2.8)

Substituting solution (2.8) in Equation (2.7), we obtain:

iµ
∂ψk

∂t
=−µ

2

2
∂2ψk

∂x2
−µ2

∑
n

〈
wk,

∂wn

∂x

〉
y

∂ψn

∂x
− µ2

2

∑
n

〈
wk,

∂2wn

∂x2

〉
y

ψn. (2.9)

If we introduce the infinite vector ψ = (ψ1,ψ2, . . . )
T , then we can represent (2.9) as the

following infinite vector equation with infinite-dimensional matrix Hamiltonian Ĥ:

iµψt = Ĥψ, Ĥ=H0(p, x)+µH1(p, x)+µ2H2(p, x),

(H0)kn=
(
p2

2
+λn(x)

)
δkn, (H1)kn=−i

〈
wk,

∂wn

∂x

〉
y

p, (H2)kn=−1
2

〈
wk,

∂2wn

∂x2

〉
y

.

In all examples considered above, the momentum operators corresponding to the slow
variables xj are −iµ∂/∂xj . Of course, one can consider a general situation in which the Ham-
iltonian depends on the operators x̂j , p̂j generating the Heisenberg algebra with commu-
tators [p̂j , x̂k] =µδj,k, µ� 1. Such a situation appears in the electron-phonon interaction
that we shall discuss in Section 4. The other obvious generalizations of the equations with
operator-valued symbols are vector equations containing “slow” and “fast” variables. For
instance, we can consider the Pauli equation in a thin quantum waveguide. In this case (see
Section 4.6), the symbol is a matrix operator differential with respect to fast variables.

To conclude this section, we present a useful formula which plays an important role in our
future considerations. Let Â and B̂ be pseudodifferential operators

Â=A(
1

−iµ∂/∂x,
2
x,µ), B̂=B(

1
−iµ∂/∂x,

2
x,µ);

then the symbol smb(ÂB̂) of their product ÂB̂ is equal to (see [14])

smb(ÂB̂)=A(p
1

−iµ∂/∂x,
2
x,µ)B(p, x,µ). (2.10)
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3. General scheme of the operator separation of variables in adiabatic problems

3.1. General statement of the problem with operator-valued symbols
and parameters

We are going to construct a certain asymptotic solution �= (�1, . . . ,�s)T , s≥ 2, to vector
equation (2.2) with a small parameter µ�1 or its stationary variant

Ĥ�=E�. (3.1)

In (2.2) and in (3.1), the matrix operator (quantum matrix Hamiltonian) Ĥ is generated by
its operator-valued symbol

H=H(p, x,−i∂/∂y, y, t,µ)=
∥∥∥∥∥∥
H11 . . . H1s

. . . . . . . . . . .

Hs1 . . . Hss

∥∥∥∥∥∥ ,

Hij =Hij

(
p,x,−i

∂

∂y
, y, t,µ

)
, 1≤ i, j ≤ s.

(In the stationary case, Hij do not depend on time t .) We assume that the operator-valued
symbol (the matrix-operator) H=‖Hij (p, x,−i ∂

∂y
, y,µ)‖ smoothly depends on p,x, t and acts

in an appropriate vector Hilbert space Hy with coordinates y from some domain My and with
the inner product 〈·, ·〉|y (for instance, in L2(My)×L2(My)× · · ·×L2(My)). Another natural
assumption is that the symbol H(p, x,−i ∂

∂y
, y,µ) can be expanded into a regular series with

respect to the parameter µ:

H
(
p,x,−i

∂

∂y
, y, t,µ

)
=H0

(
p,x,−i

∂

∂y
, y, t

)
+µH1

(
p,x,−i

∂

∂y
, y, t

)
+· · · . (3.2)

We also assume that the (pseudo)differential operator Ĥ acts in an appropriate expanded Hil-
bert space Hx,y with coordinates (x, y)∈R

n
x×My and all the future operations related to them

are valid. Of course, one has to verify the last assumption in each concrete problem. Usu-
ally (but not always), we shall consider situations in which H, as well as the operator Ĥ, are
essentially self-adjoint.

It is important to emphasize again that in (2.2) there is a small “adiabatic” parameter µ
in front of the derivatives with respect to “slow” variables x, but there is no small parameter
in front of the derivatives with respect to “fast” variables y.

Of course, one has to add additional boundary and initial conditions to Equation (2.2).
We shall do this later after the discussion in Section 4, and now we only note that we are
going to consider only special problems that are interesting from a physical point of view. The
statements of these problems follow the adiabatic separation of the original Equation (2.2)
into a set of reduced equations corresponding to different “terms” or “modes” and deter-
mined by “effective Hamiltonians” or “dispersion relations.” We present our concept of this
separation (the “operator separation of variables”) together with the corresponding formulas
in the two subsequent sections.

3.2. Anzatz of the operator separation of variables

Let us illustrate the main ideas of the operator separation of variables in adiabatic problems
with an example of a “quantum waveguide” (2.7). If the potential v(x, y) is the sum v1(x)+
v2(y), one can separate the variables and find a special solution to Equation (2.7) as a prod-
uct of two functions (modes) χ(y,µ)ψ(x, t,µ). It is clear that this representation is not valid
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if v(x, y) �=v1(x)+v2(y). Even so, since there are different scales in the longitudinal and trans-
verse directions, we can separate the modes adiabatically. According to the standard adiabatic
approach based on the fundamental papers by Born and Oppenheimer, the leading term of
the wave function in the adiabatic approximation is sought in the form of the product

�(x, y, t,µ)≈χ(x, y,µ)ψ(x, t,µ). (3.3)

But this representation can be used in a situation when the function ψ(x, t,µ) is quite
smooth and works poorly for large-enough energies of longitudinal motion. If the func-
tion ψ(x, t,µ) exhibits fast oscillations, for instance, if ψ is the WKB-solution ψ(x, t,µ)=
exp(iS(x, t,µ)/µ)ϕ(x, t,µ,h), then representation (3.3) is not convenient for the asymptotic
expansion and, instead of formula (3.3), one has to include the classical momentum ∂S/∂x

into the factor χ(y, x,µ) and use the formula (see [6])

�(x, y, t,µ)≈χ(∂S/∂x, x, y,µ)ψ(x, t,µ). (3.4)

Recall that the phase S is the solution of the Hamilton–Jacobi equation ∂S/∂t + Heff

(∂S/∂x, x, t)= 0 with the so-called effective Hamiltonian Heff (p, x, t). For the case in which
Heff (p, x, t) is a function of p only and S=−ωt+px, the Hamilton–Jacoby equation is a dis-
persion relation. Formula (3.4) is still not satisfactory, because for the case in which there are
focalization effects, i.e., there are turning points or caustics, the WKB-representation is not
true, and it is necessary to change the forms of ψ and χ . We propose to “correct” (3.4) in
such a way that a new formula would also work in the case of focal and turning points. This
correction is based on the observation that, in the WKB-case modulo a small correction, the
right-hand side in (3.4) remains the same (see, e.g., [6]) if one assumes that the first factor

is the (pseudodifferential) operator χ(
1

−iµ∂/∂x,
2
x, y, t,µ) written as a function (its symbol) of

the noncommuting operators x and p̂=−iµ∂/∂x. Finally, we suggest to look for the solution
�(x, y, t) in the adiabatic approach in the following form [11, 13, 16, 21]:

�(x, y, t,µ)=χ



1

−iµ
∂

∂x
,

2
x, y, t,µ


ψ(x, t,µ), (3.5)

where χ̂ is the “pseudodifferentional” operator whose symbol has the following (asymptotic)
expansion with respect to the parameter µ

χ(p, x, y, t,µ)=χ0(p, x, y, t)+µχ1(p, x, y, t)+· · · . (3.6)

From a physical point of view, representation (3.5) means that we “freeze” not only slow vari-
ables x as in formula (3.3), but also slow momenta, which are differential operators −iµ∂/∂x
in quantum mechanics. Note that in many situations the leading term χ0(p, x, y, t) in expan-
sion (3.6) does not depend on p, but the corrections usually do. This dependence plays an
important role when estimating the limits of the adiabatic approximation in concrete prob-
lems.

We still do not fix the equation for the function ψ describing the longitudinal motion. Fol-
lowing the idea of the so-called Peierls substitution in solid-state physics (see, e.g., [2, 5, 22]),
we assume that the wave function ψ is a solution of the following equation (describing the
longitudinal dynamics):

iµψt = L̂ψ, L̂=L



1

−iµ
∂

∂x
,

2
x, t,µ


 , (3.7)
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where L̂ is a pseudodifferential (sometimes, differential) operator with symbol L(p, x, t,µ)
having the expansion

L(p, x, t,µ)=L0(p, x, t)+µL1(p, x, t)+· · · . (3.8)

The operator L̂ is called the (full) quantum effective Hamiltonian with the principal part L̂0.
Sometimes, the symbol L0 is also called an effective classical Hamiltonian and is denoted by
L0 =Heff (p, x, t). The operator χ̂ will be called an intertwining operator (cf. [14, 17, 18]).
Equation (3.7) can also be understood as the quantization of the Hamilton–Jacobi equation
or the dispersion relation. The wave function ψ has different names in different fields. For
instance, ψ is a nuclear function in molecular physics, a longitudinal wave function in wave-
guides, an electron function in crystals, etc. We shall call it a wave function of adiabatic motion
and we shall call Equation (3.7) the effective equation of adiabatic motion.

Representation (3.5) together with Equation (3.7) (a generalization of the Peierls substitu-
tion) is a formalization of the operator separation of variables in the adiabatic approximation.
Of course, the corrections L1, L2, . . . appear in the problems in which the variables cannot
be separated exactly.

The reduced Equation (3.7) contains fewer independent variables and hence should be sim-
pler than the original one. Thus, we see (and we mentioned this in the Introduction) that solv-
ing the original equation can be divided into two parts: (1) the “operator (adiabatic) separa-
tion of variables” based on formula (3.5), which reduces the original equation to Equation (3.7),
and (2) the process of solving this simpler equation.

The realization of the first step consists in finding the symbols (functions) χj and Lj .
We shall state the general scheme of their construction and discuss different related questions
(e.g., concerning the reasonable number of terms in expansions (3.6), (3.8)) in the next sec-
tions. Now we discuss a natural generalization of the operators χ̂ and L̂.

It is easy to see that, in the case of exact separation of variables, χ =χ0 is an eigenfunc-
tion of some additional spectral problem. The same fact holds for the functions χ0(x,p, y, t);
later we shall numerate them by a multi-index ν. Thus formula (3.5) describes only some
special solutions of the original equation corresponding to the term with the index ν. It is
possible to construct more general ones summing solutions (3.5) with different indices ν and
the corresponding χ̂ , ψ . Another conclusion is that, in the case of exact separation of vari-
ables, the spectrum of the above-mentioned additional spectral problem can be degenerate and
several eigenfunctions can correspond to the same eigenvalue. Then, instead of the product
χ(y,µ)ψ(x, t,µ), one should write the sum

∑k
j=1 χj (y,µ)ψj (x, t,µ), where k is the multi-

plicity of the corresponding eigenvalue. The same generalization should be performed in for-
mula (3.5). Also, if the original problem is a vector one (i.e., if (2.2) is a system of PDEs
for s unknown functions), then χ̂j has s components. Finally, in formula (3.5) and in Equa-
tion (3.7) we mean the following:
(1) χ̂ is a matrix pseudodifferential operator with s rows and r columns,
(2) ψ is an k-dimensional vector function ψ= (ψ1, . . . ,ψk)

T ,
(3) L is an k × k matrix pseudodifferential operator with the principal symbol L0 =

Heff (p, x)Ek, where the number r determines the multiplicity of the corresponding
effective Hamiltonian Heff and Ek is the k×k identity matrix. The corrections Lj usually
are not diagonal, which means that interaction is present inside the mode (or the term)
determined by this effective Hamiltonian Heff (p, x).

The number of terms in the expansions of the intertwining operator χ̂ and the operator L̂
(with fixed index ν) can be arbitrarily large. However, it is, as a rule, a very complicated prob-
lem to calculate the terms of these series explicitly, even the lower-order terms. Therefore, it
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is natural to consider only the terms required to estimate correctly the leading term of the
asymptotics of the wave function or of the energy value.

However, the notion of the “leading” term of an asymptotics expression can be determined
not only by the adiabatic parameter µ, but also by the other ones, for instance, by the so-
called “semiclassical parameter” h, which is related to the form of the effective potential and
the solution of the reduced Equation (3.7). The appearance of this new parameter is very
important for future asymptotic constructions. We shall discuss the corresponding questions
in detail later in Section 5. Now we only say that, usually, for the construction of the leading
term of an asymptotic solution, it is sufficient to find L0, L1, and L2|p=0. Another interesting
fact is that the effects of a semiclassical splitting of the effective Hamiltonian and a change
in the classical characteristics occur in the degenerate case (see Section 4.6).

3.3. Scheme of the operator separation of variables

To simplify the analysis, let us assume that, in Equations (2.2) and (3.1), H and the operator
Ĥ are essentially self-adjoint. We shall seek the solution of (2.2) in the following form:

�i(x, y, t,µ)=
k∑
j=1

χij (
2
x,

1

−iµ
∂

∂x
, y, t,µ)ψj (x, t,µ)= (χ̂ψ)i, (3.9)

where ψ= (ψ1, . . . ,ψk)
T is the wave function of some chosen term (or a chosen “fast” mode)

with a degeneration multiplicity equal to k and χ̂ is an intertwining matrix pseudodifferential
operator:

χ̂ =
∥∥∥∥∥∥
χ̂11 . . . χ̂1k

. . . . . . . . . .

χ̂s1 . . . χ̂sk

∥∥∥∥∥∥ , χ(p, x, y, t,µ)=χ0(p, x, y, t)+µχ1(p, x, y, t)+· · · . (3.10)

We assume that the vector function ψ satisfies the “effective equation of adiabatic motion”
(3.7) generated by the matrix operator L̂

L̂=

∥∥∥∥∥∥∥
L̂11 . . . L̂1k

. . . . . . . . . . .

L̂k1 . . . L̂kk

∥∥∥∥∥∥∥
, L(p, x, t,µ)=L0(p, x, t)+µL1(p, x, t)+· · · ,

where the matrix L0(p, x, t) is proportional to the unitary k × k matrix Ek: L0(p, x, t) =
HeffEk. The coefficient of proportionality Heff is an effective Hamiltonian. Hence the problem
is reduced to finding the operators χ̂ and L̂ or their symbols χ and L. Once we have found
these, we can reduce the initial problem to a simpler (reduced) Equation (3.7) for the vector
function ψ . The original solution � can be reconstructed in accordance with (3.9).

Substituting the function � from (3.9) in (2.2), we obtain:

iµχ̂ψt + iµχ̂tψ= Ĥχ̂ψ.

Using condition (3.7), rewrite this equation in the following form: (χ̂L̂+ iµχ̂t − Ĥχ̂)ψ = 0. A
sufficient condition for the last equality to be valid is the operator relation χ̂ L̂+ iµχ̂t − Ĥχ̂ =0.
Let us pass from operators to symbols [6] in this relation using formula (2.10). This leads to
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the equation

χ(p

1

−iµ
∂

∂x
,

2
x, y, t,µ)L(x,p, t,µ)+ iµχt(p, x, y, t,µ)−

−H(p
1

−iµ
∂

∂x
,

2
x,−i

∂

∂y
, y, t,µ)χ(p, x, y, t,µ)=0. (3.11)

It can be solved using regular perturbation theory, i.e., expanding the items into series with
respect to µ. Collecting terms of order µ0 = 1, we obtain a family of spectral problems for
the self-adjoint operator H0(p, x, y,−i∂/∂y, t) depending on x,p, t :

H0(p, x,−i
∂

∂y
, y, t)χ0(p, x, y, t)=χ0(p, x, y, t)L0(p, x, t). (3.12)

We shall assume that the asymptotics (3.9) is completely determined by the eigenvalue (term)
Heff (p, x, t) whose multiplicity k does not depend on p,x, t . Moreover, we shall assume that
the value Heff is separated from the other eigenvalues or a part of the spectrum of H0 (if the
spectrum contains a continuous component) uniformly with respect to (p, x, t) in a certain
fixed domain (p, x, t)∈M.

So

L0(p, x, t)=Heff (p, x, t)E, (3.13)

where E is a unitary k×k matrix. The matrix χ0(x,p, y, t) consisting of orthonormal vector
columns, i.e., eigenfunctions of the operator H0 corresponding to the eigenvalue Heff (x,p, t),
is the intertwining operator on the proper subspace induced by this eigenvalue. It is natural to
assume that χ0(x,p, y, t) depends smoothly on all its arguments.

Collecting terms of order µ, we obtain inhomogeneous equations for χj and Lj :

(H0 −HeffE)χj =Fj −Hjχ0 +χ0Lj , j =1,2, . . . (3.14)

where Fj depend on χ0, . . . , χj−1 and L0, . . . ,Lj−1, in particular,

F1 = D̂χ0, F2 =D̂χν1 −H1χ
ν
1 +χν1L1 + i

∑
j

[
∂H1

∂pj

∂χν0

∂xj
− ∂χν0

∂pj

∂L1

∂xj

]

+1
2

∑
i,j

[
∂2H0

∂pi∂pj

∂2χν0

∂xi∂xj
− ∂2Heff

∂xi∂xj

∂2χν0

∂pi∂pj

]
. (3.15)

Here

D̂ = i
∂

∂t
+ i
∑
j

[
∂H0

∂pj

∂

∂xj
− ∂Heff

∂xj

∂

∂pj

]
= i

d
dt

+ i
∑
j

[
∂H0

∂pj
− ∂Heff

∂pj

]
∂

∂xj
,

d
dt

= ∂

∂t
−
∑
j

∂Heff

∂xj

∂

∂pj
+
∑
j

∂Heff

∂pj

∂

∂xj
.

Due to the self-adjointness of the operator (H0 −HeffE) and the Fredholm alternative,
the solvability condition for this equation is equivalent to the condition that its right-hand
part is orthogonal to the vector-columns of the matrix χ0. It follows that Lj =〈χT0 ,Hjχ0〉|y−
〈χT0 ,Fj 〉|y . In particular, one can obtain:

L1 =
〈
χT0 ,H1χ0

〉
y
− i
〈
χT0 ,

dχ0

dt

〉
y

− i

〈
χT0 ,

n∑
j=1

[
∂H0

∂pj
− ∂Heff

∂pj

]
∂χ0

∂xj

〉

y

. (3.16)
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Assuming that L1 has form (3.16), one can find the correction, i.e., the matrix χ1 = (H0 −
HeffE)

−1(F1 −H1χ0 +χ0L1), fixing it for determinacy by means of the condition of orthog-
onality of vector-columns of the matrices χ0 and χ1. Repeating this procedure leads to cal-
culation of Lj ,χj . Formulas (3.13), (3.16), etc. give the expansion coefficients of the symbol
of the reduced Equation (3.7). Note that the construction of the correction L1 includes only
functions of zero approximation (like in standard perturbation theory). In general, the symbol
L2 includes χ1, so, to find it, one has to invert the operator (H0 −HeffE).

3.3.1. Remark 1
The methods from [14] allow one to consider more general situations in which the quantum
Hamiltonian Ĥ(p̂, x̂, p̂y, ŷ,µ) is a function of vector operators (p̂, x̂, p̂y, ŷ) with commutator
relations [x̂j , p̂j ] = iµ, [ŷj , p̂yj ] = i, µ� 1, or even more complicated ones (see Example in
Section 4.2). However, in this paper we basically consider the situation in which x̂= x, p̂x =
−iµ∂/∂x.

3.3.2. Remark 2
It is not difficult to modify the presented formal scheme for the non-self-adjoint original oper-
ator H. In particular, one has to use the eigenfunctions of the adjoint operator in the orthog-
onality conditions. But, of course, it is necessary to add some additional conditions like the
existence of real-valued effective Hamiltonians, etc. (see Example in Section 4.3).

3.3.3. Remark 3 Operator separation of variables and adiabatic approximation in classical
mechanics

There exist a certain classical analog of the adiabatic approach based on the “operator sepa-
ration of variables” ([23–27]). The main idea can be illustrated by means of the Hamiltonian
H(µpx, x,py, y,µ) with a small parameter µ. If we change the variables x, px by ξ = x/µ

and pξ =µpx , then we obtain a Hamiltonian of the form H(p,µξ,py, y,µ). It is convenient
to write the Hamiltonian in noncanonical variables x and p, dp∧dx=µdpx ∧dx=µdp∧dξ :
H(p, x,py, y,µ). The Hamiltonian equations for the variables p, x, py, y have the form

ẋ=µ ∂H
∂pξ

�1, ṗ=−µ∂H
∂x

�1, ẏ= ∂H
∂py

, ṗy =−∂H
∂y
. (3.17)

Since we have ṗ, ẋ ∼µ for the derivatives, while ṗy, ẏ ∼ 1, it is natural to say that the
variables p, x are “slow variables” and the variables py, y are “fast variables.” Taking into
account that there are variables of two types, it is natural to “freeze” slow variables and
obtain a family of Hamiltonians with k degrees of freedom depending on the parameters
(p, x). We do not consider resonanace problems and restrict our consideration to the case
in which k= 1 and (py, y)∈ R

2. Let us assume that, in some domain (p, x)∈�, the trajec-
tories of H({p,x}, py, y,0) are closed. The braces {·} mean that the included variables are
considered as parameters (i.e., are “frozen”). Then it is possible to introduce “action-angle”
variables (J, ϕ) corresponding to these closed trajectories. The passage to these variables is
determined by the change of variables y = Y0(J, ϕ,p, x), py = P 0

y (J, ϕ,p, x). Unfortunately,
this change of variables is not canonical and, to make it canonical, one has to add corrections
and write y = Y0(J, ϕ,P,X)+ µY1(J, ϕ,P,X)+ · · · , py = P 0

y (J, ϕ,P,X)+ µP 1
y (J, ϕ,P,X)+

· · · , p=P +µP1(J, ϕ,P,X)+· · · , and x=X+µX1(J, ϕ,P,X)+· · · . Then the original Ham-
iltonian can be written in the form
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H(J, ϕ,P,X)=H0(J,P,X)+µ
[
∂H0

∂y
(P,X,P 0

y , Y0)Y1 + ∂H0

∂py
(P,X,P 0

y , Y0)P
1
y

+∂H0

∂x
(P,X,P 0

y , Y0)X1 + ∂H0

∂p
(P,X,P 0

y , Y0)P
1 +H1(P,X,P

0
y , Y0)

]
+O(µ2),

P 1
y =P 1

y (J, ϕ,P,X), Y1 =Y1(J, ϕ,P,X), P 1 =P 1(J, ϕ,P,X), X1 =X1(J, ϕ,P,X)

P 0
y =P 0

y (J, ϕ,P,X), Y0 =Y0(J, ϕ,P,X), (3.18)

where H(p, x,py, y,µ)= H0(p, x,py, y)+µH1(p, x,py, y)+O(µ2). Now we have a typical
problem from averaging theory. After averaging, we obtain two terms of the expansion of the
effective Hamiltonian L(J,P,X,µ)=L0(J,P,X)+µL1(J,P,X)+O(µ2):

L0(J,P,X)=H0(J,P,X),

L1(J,P,X)=
∫ 2π

0
dϕ
[
∂H0

∂y
(P,X,P 0

y , Y0)Y1 + ∂H0

∂py
(P,X,P 0

y , Y0)P
1
y

+∂H0

∂x
(P,X,P 0

y , Y0)X1 + ∂H0

∂p
(P,X,P 0

y , Y0)P
1 +H1(P,X,P

0
y , Y0)

]
, (3.19)

so J = const and the integration of the original system is reduced to solving a system with n

degrees of freedom. The action J corresponds to the “quantum” number ν of the term χν ,
the term

∫ 2π
0 dϕH1

(
P,X,P 0

y (J, ϕ,P,X),Y0(J, ϕ,P,X)
)

corresponds to 〈χ0,H1χ0〉y , and the
corrections related to the canonical change of variables in the classical problem correspond to
other terms in L1 in quantum problem. Of course, this is simply an analogy (cf. [7, 28, 29],
etc.).

3.3.4. Remark 4
The classical analogue of the reduction at the first stage is well known [37]: excluding the
fast variables, we obtain a system in the zeroth approximation with holonomic constraints;
this system is equivalent to the n-dimensional Lagrangian system. Thus, the adiabatic reduc-
tion to (3.7) could be interpreted as the “excluding of quantum constraints” (see [30–36]). But
the classical system corresponding to the reduced quantum system generally does not coincide
with the result of the classical reduction (in the sense [37]). Moreover, the classical systems
arising in the adiabatic reduction turn out to be different for different relations between µ

and “semiclassical” parameter h, which will be introduced in Section 5; using the terminol-
ogy of [15, 38], we can say that they correspond to different nonstandard characteristics of
the quantum problem. For example, the classical equation of motion in nanotubes can some-
times include terms arising because spin exists. This is explainable physically because longitu-
dinal motion is already determined by rather small energies that are quite comparable to the
spin energy.

3.3.5. Remark 5
In some problems one can apply the semiclassical approximation to solve (3.12) (see e.g. [13,
39]).

4. Examples of problems with operator-valued symbols and parameters

Let us illustrate the general scheme with several examples.
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4.1. Equation with rapidly oscillating coefficients and electron waves in crystals

One encounters equations with rapidly oscillating coefficients in many problems of solid phys-
ics and continuum mechanics. For instance, these types of equations describe propagation
of electron waves in crystals, of elastic waves in composite materials, etc. For constructing
asymptotic solutions to equations with rapidly oscillating coefficients, there exist different
approaches depending on their behavior and properties. Among these approaches, one can at
least mention averaging methods, homogenization, and adiabatic approximation. There exists
a very extensive literature concerning this topic and a review of all these approaches will not
be attempted here. We only want to show that one can look at equations with rapidly oscillat-
ing coefficients as equations with operator-valued symbols [11, 12] and, for the construction
of their asymptotics, use the method described in Section 4. Here we refer only to the general
monographs [1, 3, 40–42] and closely related papers [43–45].

As an example, we consider the Schrödinger equation with a fast oscillating potential

iµψt =−µ
2

2
�ψ+v

(
�(x)

µ
, x

)
, x ∈R

n, �∈R
m, (4.1)

where v(y, x) is a smooth function that is 2π -periodic with respect to each “fast” variable yj ,
j=1, . . . ,m. The given phases �j(x) are smooth functions. Generally speaking, their number
k can be arbitrary. In some problems, the phases are linear functions �j =〈kj , xj 〉; the non-
linear phases �j describe the case of a nonuniform potential v. The additional dependence
of the potential on the variable x implies its slow deformation. Equation (4.1) with such a
potential simulates the propagation of electron waves in a lattice or, for instance, if m=1, in
stratified media. The simplest example of a rapidly oscillating potential is given by the for-
mula (n=1,m=1): v=v0(x)+a(x) cos �(x)

µ
, where v0(x), a(x) are smooth functions.

Let us find the unknown function ψ(x, t,µ) in the form

ψ(x, t,µ)=�
(
�(x)

µ
, x, t,µ

)
, (4.2)

where the new unknown function �(y, x, t,µ) is 2π -periodic with respect to each variable yj .
Substituting (4.2) in (4.1), we see that the function ψ(x, t,µ) (4.2) satisfies (4.1) if the func-
tion �(y, x, t,µ) is a solution of (2.2) with

Ĥ=
(

−iµ
∂

∂x
− i
∂�

∂x

∂

∂y

)2

+v(y, x). (4.3)

We again see that the small parameter µ is located in front of the derivative ∂/∂x, but there
is no small parameter in front of the derivative ∂/∂y. Thus the equation with Hamiltonian
(4.3) is an equation with an operator-valued symbol, namely,

H=H0 −µ
m∑
j=1

��j
∂

∂yj
, H0 =


p− i

m∑
j=1

∂�j

∂x

∂

∂yj




2

+v(y, x). (4.4)

For each fixed (p, x), the operator H acts in the L2-space on a k-dimensional torus.
If the vectors ∂�j/∂x are linearly independent for each x, then the spectrum of the opera-

tor H is discrete, but, to obtain the reduced equation, one must also use the assumption that
the multiplicity of eigenvalues is independent of (p, x). In particular, if m=1 and ∂�/∂x �=0,
the spectral problem (3.12) for determining the effective Hamiltonians is a periodic problem
and can be reduced to the 1-D Schrödinger equation on a circle for Bloch solutions (see [21,
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46]). To realize this reduction, we change the variables in the equation H0χ0 =Heffχ0 for χ0

and Heff as follows:

y=Uξ, χ0 =ue−iPξ , U =
∣∣∣∣∂�∂x

∣∣∣∣ ,
and put

P =P(p, x)≡
〈
∂�j

∂x
,p

〉/∣∣∣∣∂�∂x
∣∣∣∣
2

. (4.5)

Then this equation takes the form

−uξξ +v(Uξ, x)u=Eu, E =Heff −p2 +P 2,

and the periodicity condition becomes the Bloch condition:

u(ξ +2π/U,x)= e2π iP u(ξ, x).

The variable x is contained in the reduced problem as a parameter. The variable (number) P
is called the quasi -momentum of the corresponding Bloch solution. It is a well-known fact
that the spectrum of the operator −∂2/∂ξ2 +v(Uξ, x) on a circle consists of bands and gaps.
Let us enumerate the bands by the number ν and denote the ends of the νth band by Eν− and
Eν+. The spectral parameter E and the quasi-momentum P in each νth band are connected
by the dispersion relation

E =Eν(P, x).

The assumption on the potential v(y, x) that the νth effective Hamiltonian (eigenvalue) of the
operator Hν is simple (or does not intersect with other effective Hamiltonians at some points
(p, x)) is equivalent to the assumption that, for each x, the νth band does not stick together
with the ν−1st and ν+1st bands. Under this assumption, one can find the reduced equation
describing solutions corresponding to the νth term (effective Hamiltonian)

Hν
eff =Eν(P (p, x), x)+p2 − (P (p, x))2.

The corresponding function χν0 (y,p, x) is expressed via the Bloch function uν , uν(ξ,P, x), by
the formula

χ0 =uν
( y
U
,P (p, x), x

)
exp

(
−i
P(p, x)y

U

)
.

If n= 1 and �= x, then P =p, which leads to the following well-known fact in solid state
physics: the quasi-momentum becomes the momentum for the equation for electron waves in
crystals. In contrast to Examples 1, 2, and 3, the effective Hamiltonian here is not a polyno-
mial in p and the function χ0 depends on the momentum p.

Let us write the first correction L1 to the effective Hamiltonian. Using formula (3.16) we
obtain

L1 =
〈
χ0,

dχ0

dt

〉
+
〈
χ0,

(
2p− ∂H

∂p

)
∇χ0

〉
+2iRe

〈
∇χ0

∂χ0

∂y
,∇χ0

〉
.

Note that it is possible to meet a situation in which the number of phases in the potential
is greater than the dimension of the configuration space n. For instance, consider the case
m= 2, n= 1. In this situation, the operator H is degenerate and its spectrum has a rather
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complicated structure. In particular, the spectrum can be a set that is dense everywhere on
the spectral axis (the so-called devil’s stair) and the multiplicity of its eigenvalues can depend
on x. These problems are related to different types of complicated resonances and to prob-
lems with intersecting characteristics. Some results for the solutions of the Cauchy problem in
this situation are obtained in [12, 21, 46].

Remark: Bloch electrons in a weak magnetic field and the Peierls substitution
The original Peierls substitution was first proposed for the problem with Bloch electrons in a
weak magnetic field (see, e.g., [5]). Using the terminology of this paper, this problem can be
stated as a spectral problem for the magnetic Schrödinger operator with the periodic electric
potential:

Ĥ= 1
2

(
−iµ

∂

∂x
−A(x)

)2

+v
(
x

µ

)
, 〈∇,A〉=0.

For simplicity, we restrict ourselves to a simple cubic lattice, i.e., assume that v=v(y1, y2, y3)

is 2π -periodic with respect to each variable yj =xj /µ, j =1,2,3. The fact that the magnetic
field is weak means that A(x) does not contain any irregular dependence on the parameter
µ in contrast to the crystalline potential v(x/µ). After the space regularization (4.2) with
phase vector �(x)≡ x similarly to (4.3), we obtain the problem with operator-valued sym-
bol H = (1/2)(p − i∂/∂y −A)2 + v(y). The procedure based on the formulas (4.5) leads to
the problem for Bloch solutions for the operator H = −(1/2)�y + v(y). Let E = Eν(P ), P =
(P1, P2, P3) determine the dispersion relation for the Bloch solutions with quasi-momentum
P . Then, according to this subsection, Lν0 ≡Hν

eff = Eν(p−A), Lν1 = [tr( ∂
2Eν
∂p2

∂A
∂x
)](p−A), and

in (3.7) L̂= L̂ν0 +µL̂ν1 +O(µ2)=Eν(−iµ ∂
∂x

−A)+O(µ2) which is exactly the Peierls substitu-
tion. The higher order corrections look much more complicated than the leading term [47]. It
seems to us that our approach allows one to calculate these corrections more easily than in
[47]. Semiclassical analysis of the reduced Equation (3.7) reveals a very complicated and strik-
ing topology of surfaces that are invariant to the corresponding phase flow. Recent results and
a bibliography can be found in [48].

4.2. Electron-phonon interaction

As was noted in Remark 1 in Section 3.3.3, one can consider adiabatic problems as prob-
lems containing “slightly noncommuting” operators. In the zeroth-order approximation, these
operators can be substituted by “c-numbers,” which allows one to determine a term. For
“slightly noncommuting” operators, there are physical quantities that are slowly varying in
time. The slightly commuting operators can generate a certain Lie algebra. In the simplest
case, this Lie algebra is the Heisenberg algebra, and we can directly use the scheme and for-
mulas proposed in Section 3. Sometimes, it is possible to consider the same problem from a
different angle, which depends on the choice of the operators. For instance, to simplify the
form of the original Hamiltonian, one can use a (noncanonical) change of variables, which,
in turn, leads to the replacement of the Heisenberg commutation relations by different ones.
We consider such an example which can be analyzed from these different viewpoints, but since
the study of problems based on non-Heisenberg commutation relations requires new nontriv-
ial algebraic and geometric constructions, we restrict ourselves to the approach described in
Section 3, although, from some viewpoint, the approach based on non-Heisenberg commuta-
tion relations can be more readily realized in some concrete problems.

The electron-phonon interaction is the interaction between light fermions (electrons)
and heavy bosons (phonons). Here the lattice modes (bosons) are slow and the electrons
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(fermions) are fast. The Hamiltonian of electron-phonon interaction is (see, e.g., [49])

Ĥ=
∑
n

ĉn(ψ̂
+
n+1ψ̂n+ ψ̂+

n ψ̂n+1)+
∑
n

K(x̂n+1 − x̂n)2 + p̂2
n/2, (4.6)

[x̂n, p̂n′ ]= iµδnn′ , µ=–h/α
√
m0c0, (4.7)

[ψ̂+
j , ψ̂k]+ ≡ ψ̂+

j ψ̂k + ψ̂+
k ψ̂j = iδjk.

Here m0, c0,K,α are physical constants; moreover, µ� 1; the linear operators �̂+
1 , . . . , �̂

+
M

and �̂1, . . . , �̂M act on the Hilbert space H1, the linear operators p̂1, . . . , p̂M and x̂1, . . . , x̂M

act on the Hilbert space H2. The full quantum Hamiltonian Ĥ acts on the Hilbert space H=
H1 ⊗H2. The typical situation is given by the operators

ĉn=f (x̂n+1 − x̂n), (4.8)

where f (z) is a smooth function; in particular, ĉn = 1 − α(x̂n+1 − x̂n). Let us set X̂ =
(x̂1, . . . , x̂N ), P̂ = (p̂1, . . . , p̂N ), �̂ = (ψ̂1, . . . , ψ̂M), �̂+ = (ψ̂+

1 , . . . , ψ̂
+
M). In a more general

case, the Hamiltonian Ĥ of electron-phonon interaction can be written as

Ĥ=〈�̂+,L(X̂, P̂ )�̂〉+�(X̂)+ P̂ 2/2, (4.9)

where L(P,X) is a Hermitian M ×M matrix with coefficients depending on X and P , and
the operator L(X̂, P̂ ) is understood in the sense of Weyl calculus (see [14, 17, 18]). To sim-
plify the consideration, we restrict ourselves to the case in which L=L1(X)+L2(P ); then the
question about the ordering of the operators X̂ and P̂ does not appear. As we have just said,
it is possible to develop the “operator separation of variables” based on the algebra of oper-
ators ĉj , p̂j with the commutation relations

[p̂j , ĉk]= iµ(δjk − δjk+1)ĉk,

but here we use the standard representation x̂j =xj and p̂j =−iµ∂/∂xj and close the lattice
by the Born–Kármán periodicity condition identifying the operators with the numbers j and
j +M.

Denote the electron-phonon wave function by ϒ and consider the stationary problem

Ĥϒ=Eϒ, ϒ ∈H. (4.10)

We have an equation with operator-valued symbol which, obviously, is the operator

H(X,P )=〈�+,L(X,P )�〉+ (�(X)+P 2/2)Î1 (4.11)

acing on the Hilbert space H1. We also denote the identity operator acting on Hj by Îj .
To realize the scheme of the operator separation of variables, it is necessary to find

the spectrum of the operator-valued symbol H(X,P ). A nice fact is that this spectrum
can be expressed via the eigenvalues of the matrix L. Namely, suppose that ψ(Ej ) =
(ψ1(Ej ), . . . ,ψM(Ej )) are the eigenvectors of the matrix L(X,P ) corresponding to its eigen-
values Ej(X,P ) E1 ≤· · ·≤EM and satisfying the normalization conditions 〈ψ(Ej ),ψ(Ek)〉=
δjk. Using the basis {ψ(Ej )}, one can expand the operators �̂+ and �̂

ψ̂+ =
M∑
j=1

ψ∗(Ej )â+
j , ψ̂=

M∑
j=1

ψ(Ej )âj . (4.12)
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The coefficients (operators) of this expansion, â+
j and âj , are called the creation and anni-

hilation operators [50]. They determine the operators of the number of particles N̂j = â+
j âj .

Finally, the operator-valued symbol can be written as

H(X,P )=
M∑
j=1

Ej(X,P )N̂j +�(X)+P 2/2, N̂j = â+
j âj .

From this, we find the νth effective Hamiltonian

Hν
eff (X,P )=

ν∑
j=1

Ej(X,P )+�(X)+P 2/2, (4.13)

and the symbols of the corresponding intertwining operators χν0 :

χν0 = N̂1 . . . N̂ν(I − N̂ν+1) . . . (I − N̂M)·1. (4.14)

Let us analyze the formula for L1. If the effective Hamiltonian Hν
eff is degenerate or

L1(X),L2(P ) are complex matrices, one must use the general formula (3.16). For the case in
which L2(P )= 0 and L1(X) is a real-valued matrix and its spectrum (E1(x), . . . ,EM(x)) is
nondegenerate, it follows from formulas (4.13) that the effective Hamiltonians are nondegen-
erate and Hν

eff and χν0 are real. Thus, taking into account the relations H1 = 0,
〈
χT0 ,

dχ0
dt

〉
y
=

1
2

d
dt
〈
χT0 , χ0

〉
y
=0, ∂H0

∂pl
− ∂Heff

∂pl
I =0, we obtain

L1 =0.

This equality holds for the operators ĉn given by formula (4.8), in particular, if cn= exn−xn−1 .
It was pointed out that in this case it is possible to relate problem (4.10) to the integra-

ble Toda lattice model [51, 52]. Then this observation was used to construct its semiclassical
asymptotics [53], and at the same time, commutation relations of different type were chosen.

4.3. Internal waves in the ocean in a pycnocline

The next example concerns a situation in which the operator H is not self-adjoint; moreover,
the system of equations under study differs somewhat from (2.2). Thus the scheme of Section
3 requires a slight modification.

We consider a system of hydrodynamic equations for an ideal incompressible liquid line-
arized on the flow with velocity U and density ρ0. Let x = (x1, x2) be the horizontal coor-
dinates, z be the vertical coordinate, u= (u1, u2, u3), and ρ perturbations of the velocity and
density, � the pressure and g= (0,0, |g|) the gravity acceleration. We introduce dimension-
less variables and parameters by the formulas: U =U ′ω1λ,u=u′ω1λ, t= t ′ω2, x=x′L, z=z′L,
g=g′ω2

1λ, �=�′ω2
1λ

2, and ρ0 =ρ′
0ρ̄, ρ=ρ′ρ̄, where ω1 is the characteristic frequency of the

internal wave, λ is the characteristic wavelength, L is the characteristic distance in the hori-
zontal direction within which the characteristics of the liquid vary, ω2 is the average value of
the Väisälä–Brunt frequency, ρ̄ and ω2

1λ
2 are the characteristic values of density and pressure,

and µ=λ/L=ω1/ω2 �1 is a small parameter.
In dimensionless variables, the linearized system for waves in liquids has the form [10, 54]:


µρ0
∂u

∂t
+µρ0〈U,∇〉u+µρ0〈u,∇〉U +µ∇�+ρg=0,

µ
∂ρ

∂t
+µ〈U,∇〉ρ+µ〈u,∇〉ρ0 =0,

µ〈∇, u〉=0,

(4.15)
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where 〈·, ·〉 is the inner product in R
3. The difference between (4.15) and (2.2) is that the last

equation of this system contains the time-derivative.
We shall consider that the width of the picnocline �z ∼ µ, and that the depth of its

location varies at distances ∼1, i.e., ρ0 = ρ0(z/µ− f (x), x) (the equation for the surface of
a picnocline is z=µf ). The functions U(x)= (U1,U2,0), ρ0(y, x), f (x) are assumed to be
smooth, 0< δ0 < ρ0 < c0 (δ0, c0 are constants), the square of the Väisälä–Brunt frequency
ω2

0 = −|g| ∂ρ0
∂y
/ρ0 is positive and vanishes rather fast as |y| → ∞. We assume that the func-

tions uj and ρ decay quite fast as |z| → ∞. The other boundary and initial conditions for
(4.15) are chosen in a special way and should be formulated for the corresponding reduced
effective equation of adiabatic motion (3.3).

Let us introduce a new independent variable y= z/µ− f (x) and a vector with five com-
ponents �(x, y, t,µ)= (u, ρ,�). We must substitute the differential operators as ∂

∂xi
→ ∂

∂xi
−

∂f
∂xi

∂
∂y

and µ ∂
∂z

→ ∂
∂y

in the equations for the vector �. Then, for �, we obtain a system of
equations containing “fast” variable y and slow variables x, t . For convenience, we multiply
this system by i=√−1:

iµB�t =H

 2
x,

1

−iµ
∂

∂x
, y,−i

∂

∂y
,µ


�(x, y, t,µ), B=




ρ0 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 1 0
0 0 0 0 0



. (4.16)

The matrix symbols H0 and H1 have the form

H0

(
x,p, y,−i

∂

∂y
, t

)
=




ρ0〈U,p〉 0 0 0 p1

0 ρ0〈U,p〉 0 0 p2

0 0 ρ0〈U,p〉 −i|g| −i
∂

∂y

0 0 −i
∂ρ0

∂y
〈U,p〉 0

p1 p2 −i
∂

∂y
0 0



,

H1 =−iρ0




∂U1

∂x1

∂U1

∂x2
0 0 0

∂U2

∂x1

∂U2

∂x2
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




+




0 0 0 0
∂f

∂x1
(i
∂

∂y
)

0 0 0 0
∂f

∂x2
(i
∂

∂y
)

0 0 0 0 0

−i
∂ρ0

∂x1
+ i

∂f

∂x1

∂ρ0

∂y
−i
∂ρ0

∂x2
+ i

∂f

∂x2

∂ρ0

∂y
0 0 0

∂f

∂x1
(i
∂

∂y
)

∂f

∂x2
(i
∂

∂y
) 0 0 0




+〈U,∇f 〉B
(

i
∂

∂y

)
,
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where p= (p1, p2,0). Let us show that the general scheme of the operator separation can be
easily modified for this situation, although one of the equations in the system does not con-
tain the time-derivative.

We seek the solution in the form (3.9) and assume that ψ(x, t,µ) satisfies an effective
equation of the form (3.3). Then, instead of (3.11), we obtain the following relation

Bχ


 2
x,p

1

−iµ
∂

∂x
, y, t,µ


L(x,p, t,µ)+ iµBχt(x,p, t, y,µ)

−H

 2
x,p

1

−iµ
∂

∂x
, y,−i

∂

∂y
, t,µ


χ(x,p, y, t,µ)=0.

Expanding this relation into a series with respect to a small parameter µ, instead of the eigen-
value problem, we obtain the problem for the spectral parameter Heff of the operator sheaf
(H0 −BHeff ),(

H0

(
x,p, y,−i

∂

∂y
, t

)
−BHeff (x,p, t)

)
χ0(x,p, y, t)=0,

and the following equation for the corrections χ1 and L1:
(

H0

(
x,p, y,−i

∂

∂y
, t

)
−BHeff (x,p, t)

)
χ1 =F1 −H1χ0 +Bχ0L1, F1 = D̂χ0 (4.17)

D̂ = iB
∂

∂t
+ i
∑
j

[
∂H0

∂pj

∂

∂xj
−B ∂Heff

∂xj

∂

∂pj

]
= iB

d
dt

+ i
∑
j

∂(H0 −BHeff )

∂pj

∂

∂xj
.

We assume that the chosen spectral parameter Heff (x,p, t) is nondegenerate, so χ0 is a
vector with five components {χ0j }, j = 1, . . . ,5. Then the solution of the problem for the
operator sheaf has the form



χ01 = i
p1

p2

∂w (y, x,α)

∂y
,

χ02 = i
p2

p2

∂w (y, x,α)

∂y
,

χ03 =w (y, x,α) ,

χ04 = i
∂ρ0

∂y

w (y, x,α)

�
,

χ05 =−iρ0
�

p2

∂w (y, x,α)

∂y
.

(4.18)

Here �= 〈U,p〉 −Heff (x,p), α=�2/p2, p2 =p2
1 +p2

2, w(y, x,α) is an eigenfunction of the
problem

1
ρ0(y, x)

∂

∂y
ρ0(y, x)

∂

∂y
w(y, x,α)+ ω2

0(y, x)

α
w(y, x,α)=κ(x, α)w(y, x,α),

and Heff (x,p, t) is a solution of the algebraic equation

κ

(
x,
(〈U,p〉−Heff (x,p))

2

p2

)
=p2.
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We choose an eigenvalue κ and consider the corresponding function Heff (x,p). In general,
this function is multi-valued; we fix one of its branches and assume that this branch is a
smooth function of x, p.

The first correction L1 is found from the solvability condition for Equation (4.17). Its
right-hand part must be orthogonal to the kernel of the adjoint operator (H −BHeff )

∗. We
denote a function from its kernel by χ∗

0 . Then the first correction to the effective Hamilto-
nian is

L1(x,p, t)= 1
〈χ∗

0 ,Bχ0〉

〈
χ∗

0 ,


H1 − iB

d
dt

− i
∑
j

∂(H0 −BHeff )

∂pj

∂

∂xj


χ0

〉

y

.

To determine χ∗
0 , we note that the construction of the operator adjoint to (H0 −BHeff ) is

equivalent to the replacement |g|↔−∂ρ0/∂y. This gives

χ∗
0k =χ0k, k=1,2,3,5, χ∗

04 =−i|g|w(y, x,α)
�

.

Using these relations, we obtain

〈χ∗
0 ,Bχ0〉y = 1

p2

∫
ρ0

∣∣∣∣∂w∂y
∣∣∣∣
2

dy+
∫
ρ0 |w|2 dy+

∫
ρ0ω

2
0

�2
|w|2dy, (4.19)

〈χ∗
0 ,H1χ0〉y =− i

p4

2∑
j,k=1

∂Uj

∂xk
pjpk

∫
ρ0

∣∣∣∣∂w∂y
∣∣∣∣
2

dy− i
�

p4
〈p,∇f 〉 (4.20)

×
(∫

∂w̄

∂y

∂

∂y

(
ρ0
∂w

∂y

)
dy+ c.c.

)
− i

1
p2�

∫ 〈
p,∇ρ0 −∇f ∂ρ0

∂y

〉
w̄
∂ρ0

∂y

∂w

∂y
dy+ i

p2
〈U,∇f 〉

×
∫
ρ0
∂w̄

∂y

∂2w

∂y2
dy+ i〈U,∇f 〉

∫
ρ0w̄

∂w

∂y
dy− i〈U,∇f 〉 |g|

�2

∫
w̄
∂

∂y

(
∂ρ0

∂y
w

)
dy.

Using formulas (4.19–4.20) we can calculate the first correction L1. We will not give here the
explicit formula for L1 in the general case because of its awkward nature.

4.4. Electromagnetic waveguides, integral optics, surface gravity water waves
and shells

Electromagnetic-wave propagation in waveguides is described by the wave equation containing
the second time-derivative. In the two-dimensional case, we have a situation similar to that con-
sidered in Section 2.2. One can easily generalize the scheme of Section 3 to this situation. The
change consists in the following: instead of iµψt , one must write the second time-derivative
µ2ψtt in the left-hand side of (3.7). The same change allows one to consider three-dimensional
waveguide problems. But now it is possible to consider waves in thin films (integral optics) or
in thin tubes. The stationary variant of such equations is the Helmholtz equation

(�+k2n(x))�=0 (4.21)

with the refractive index n(x) and, e.g., Dirichlet conditions �=0 on the boundary of the film
or the tube. The parameter µ characterizes the ratio between the transverse and longitudinal
dimensions of the waveguide; one can apply the adiabatic approximation if the boundary of
the waveguide changes slowly. Maslov [55] considered problems of this type and constructed
asymptotic solutions predicting the possibility of creating one-mode resonators by means of
the waveguide geometry. Later on, problems of this type were considered in more general sit-
uations in optics and quantum mechanics (see, e.g., [31–36, 56–59]).
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The consideration of the Helmholtz equation is very similar to that of the stationary
Schrödinger equation. In what follows, we consider the Schrödinger equation in a quantum
waveguide in a more complicated situation.

More complicated examples similar to planar waveguides (thin films) lead to problems on
wave propagation in shells. Instead of the wave equations, one must consider the Lamé equa-
tions in the theory of elasticity. The operator separation of variables can also be used in prob-
lems of this kind, but the study of these is far beyond the scope of this paper.

A more exotic example of operator separation of variables is given by the theory of sur-
face gravity water waves over an uneven bottom (see, e.g., [60]). Actually, this is the lineariza-
tion of the problem with a free boundary and the anzatz (3.5) was first used in this situation
[11]. The operator approach is discussed in detail in [11, 17, 18, 61], so we do not consider
this problem here.

4.5. Nanophysics: wave propagation in nanofilms

As far as adiabatic problems are concerned the two subsequent examples (quantum waves
in nanofilms and nanotubes) are probably the simplest. An interest in these problems has
arisen recently because of the enormous progress in nanotechnology. It seems that most of
the results described below, as well as many recent mathematical results (e.g., [31–36, 57–59]),
have appeared only recently, because there was no keen physical interest in the correspond-
ing problems before. Now the question is how to study concrete applied problems. Needless
to say that the representation of the solution in a form appropriate for practical analysis is
an additional and sometimes nontrivial problem (even in the case of nanofilms and nanotu-
bes with simple structure, e.g., without branching). So below we discuss some specific proper-
ties concerning quantum waveguides, present the effective equation of adiabatic (longitudinal)
motion in thin films and tubes, and briefly touch upon only a few possible applications of
the general theory to problems of quantum-waves in nanotubes with spin taken into account.
The results of this subsection represent the particular case of the general results concerning
quantum-wave propagation in thin films taking spin into account. These more general results
were obtained in collaboration with Brüning [62].

Thin crystalline films of width ∼ 10nm (a few monoatomic layers), synthesized recently,
give a more complicated example of a quantum waveguide. Such a film is a waveguide for
a quasi-particle with charge e propagating along the film, and we can affect this particle by
means of an external electromagnetic field. In reality, a quasi-particle has spin, but we shall
not consider spin effects for nanofilms.

The nanofilm width d0 ∼ 1 nm (10 Å) is comparable with a de Broglie wavelength of λ=
2π/kF ∼ 1 nm of an electron with an energy of the order of the Fermi energy εF ∼ 1 eV.
This circumstance leads to the following effect of “dimensional quantization” of low-dimen-
sional systems: the domain of the wave-function localization in a normal direction to the film
has dimensions ∼λ, and the energy corresponding to the motion in this direction is quan-
tized. Therefore, the total three-dimensional problem of describing the quantum states can be
divided into several reduced problems (on “subbands of dimensional quantization”) already
with two-dimensional quantum effective Hamiltonians (along the film surface), which, in the
end, allows one to obtain a sufficiently explicit description of these states by using asymptotic
formulas.

The film boundaries play an important role in future constructions. A natural idea is to
simulate the boundaries of the film by means of the Dirichlet conditions or “rigid walls”
for the wave function. But it is more convenient to simulate by using so-called “soft walls.”
Boundaries of this type are related to the physical mechanism of confinement of electrons
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near the physical film. The confinement appears as a result of the electrostatic interaction
between the film and the quasi-particle. One usually simulates this interaction by intro-
ducing a confinement potential vint in a direction normal to the film. The potential vint

increases very fast near the imaginary boundaries of the film (the “walls”). Thus, the wave
function decays very fast outside the film and the confinement potential vint replaces the
“rigid” walls simulated by the Dirichlet conditions. From a “mechanical” point of view
the confinement potential represents the interaction with imaginary walls. The same idea
is used when simulating nanotubes. We shall present the corresponding formulas somewhat
later.

The effective dynamics of quantum states in the approximation of the strong coupling
method is determined by the Schrödinger equation:

i–h�t = Ĥ�, Ĥ= P̂ 2

2m
+vint(r)+vext(r, t), (4.22)

where P̂ = −i–h∇ − (e/c)A(r, t), e= −e0 is the charge of electron, m is the effective mass of
quasi-particle, c is the velocity of light, and (vext(r, t),A) are the potentials of external elec-
tromagnetic field. We shall consider a space-uniform time-dependent magnetic field H=H(t).

The characteristic value of the transverse energy ε⊥ in the tube can be found from the
uncertainty relation: since the “transverse” momentum is ∼–h/d0, we have ε⊥ ∼–h2/(md2

0 ). Let
us introduce the characteristic “longitudinal” length l0. Depending on the problem consid-
ered, l0 can be, for instance, the radius of curvature of the film or the radius of the solu-
tion localization area, etc. We assume that l0 � d0. We introduce the magnetic length lM =√

–hc/
(
e|H|), the magnetic field quantum �0 = 2π–hc/e, and the dimensionless magnetic field

as the number of magnetic flux quanta passing through the characteristic area l0d0: H′ =
l0d0/lM

2 · H/|H| = 2πl0d0 · H/�0. We introduce the new variables r′ = r/l0, the dimensionless
time t ′ = t/T , T =md0l0/

–h, the dimensionless potentials v′
int = vint/ε⊥, v′

ext = vext/ε⊥, A′ =
ed0(

–hc)−1A, and the dimensionless constant α′ =–hα/d2
0 and divide both sides of (4.22) by the

energy of transverse motion ε0. Below, we shall omit the primes. Then the equation describ-
ing the motion of a quantum particle (or a quasi-particle) in a quasi-two-dimensional crystal
takes the form

iµ�t = Ĥ�, Ĥ=1/2(−iµ∇ −A)2 +vint(r)+vext(r, t). (4.23)

The fact that we consider the last equation in a film is determined by the boundary condi-
tions. We shall assume that the film is determined by some smooth surface �. This means that
Equation (4.23) holds and the boundary conditions are formulated in some neighborhood of
�. It is convenient to use special curvilinear coordinates for the description of these condi-
tions, as well as for all future investigations.

4.5.1. Curvilinear coordinates
By x= (x1, x2) we denote the (dimensionless) local coordinates on the surface �; then each
point r in a neighborhood of � can be determined by three values (x1, x2, y), where y is the
distance between the point r and its projection R(x)∈�. Then we have

r=R(x)+yn(x),

where, as above, n(x) is a unit normal vector on �. Note that, in general, the coordinates
x1, x2 are not orthogonal, but always 〈n,n〉= 1, 〈n, ∂iR〉= 0, i= 1,2. Thus the metric tensor
is
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Gab=
∥∥∥∥γij 0

0 1

∥∥∥∥ , G=detGab, a, b=1,2,3, (4.24)

where γij = 〈∂ir, ∂j r〉, γ = det γij , i, j = 1,2, and G= γ . Now let us present the components
of the vector potential A in the coordinates (x1, x2, y). We choose the symmetric form of
the vector potential A = 1/2[H, r]. Hence the vector potential satisfies the Lorentz gauge:
∂Aa/∂ra =0. From now on, it is convenient to use the Einstein notation and the summation
rule.

4.5.2. Soft and rigid walls
Using curvilinear coordinates, one can consider an “empty” film with “rigid” walls: vint = 0,
�|∂�=0 (the Dirichlet condition) or a film with “soft” walls: vint �=0, �(x, y)∈L2(y) at each
x. However, the last definition requires vint(x, y) to be identically defined in the entire R

3.
The last condition is too strong, since �(x, y) is exponentially small for y�µ and any con-
ditions on the function � in this region affect its behavior negligibly. To be definite, in what
follows, we assume that �(x, y)|∂�=0. The “empty” film with “rigid” walls can be considered
as the limit of soft walls described by the potential rapidly increasing near the boundary. As
an example, let us consider the potential vint(x, y

′)= (y′/D(x))2m, y′ =y/µ, m>0. As m→∞,
we have vint(x, y <d(x))→0 and vint(x, y >d(x))→∞.

4.5.3. Operator-valued symbol in a nanofilm
It is well known that the use of the function � ′ = �G1/4 instead of � can significantly
simplify the corresponding calculations. Substituting the function �=G−1/4� ′ in (4.23), we
obtain the following equation for the function � ′:

iµ� ′
t = Ĥ′� ′, Ĥ′ =G1/4ĤG−1/4. (4.25)

Using the formula G1/4�G−1/4 =Gab∂a∂b+Gab,a ∂b+G−1/4∂a
(
G1/2Gab∂b(G

−1/4)
)
, we obtain

Ĥ′ = 1
2
Gabp̂ap̂b− iµ

2
Gab,a p̂b− µ2

2
1

G1/4
∂a

[
G1/2Gab∂b

(
1

G1/4

)]

−GabAap̂b− iµ
4
GabAa∂b(logG)+ 1

2
GabAaAb+vext(x, y, t)+vint(x, y/µ).

We want to study solutions to Equation (4.25) that feature only a few oscillations in the
transverse direction. From a physical point of view it is clear that, in general, the nontriv-
ial behavior of such solutions should be determined by two-dimensional effective equations of
adiabatic motion (3.7) on the surface � in a neighborhood of the physical film. Recall that
our goal is to find these reduced equations corresponding to solutions with different numbers
of transverse oscillations. As we have different scales in the transverse and longitudinal direc-
tion, it is natural to use the variable y′ =y/µ instead of y. To simplify the notation, we omit
the prime. Then the operator Ĥ′ in (4.25) is

Ĥ′ = γ ij

2
(p̂i p̂j −2Aip̂j +AiAj )+ 1

2
(p̂2
y −2Ayp̂y +A2

y)+vext(r, t)+vint(x, y)

− iµ
2
γ
ij
,i p̂j − iµ

4
γ ijAi∂j (log γ )− i

4
Ay∂y(log γ )

−µ
2

2
1
γ 1/4

∂i

[
γ 1/2γ ij ∂j

(
1
γ 1/4

)]
− 1

2
1
γ 1/4

∂y

[
γ 1/2∂y

(
1
γ 1/4

)]
, (4.26)
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where Ai =〈∂ir,A〉 and Ay =〈n,A〉. Equation (4.25), with the Hamiltonian determined by for-
mula (4.26), is the object of our future study.

Using these formulas, we find the first and second terms of the expansion of the symbol
of operator Ĥ′:

H′
0

(
x,p, y,−i

∂

∂y
, t

)
= 1

2
gijPiPj + 1

2
P̂2
y +vext

(
R(x), t

)+vint(x, y), (4.27)

H′
1

(
x,p, y,−i

∂

∂y
, t

)
= 1

2
yγ

ij

1 PiPj −ygijPiA1
j +〈∇vext(R(x), t), yn〉

−i
(

1
2
g
ij
,i pj + 1

4
gijA0

i ∂j (log g)+ 1
4
A0
y [∂y(log γ )]y=0

)
, (4.28)

where p= (p1, p2), A = A0 +µyA1, A0 = 1/2[H,R], A1 = 1/2[H,n], Ai =A0
i +µyA1

i +O(µ2),
A0
i =〈∂iR,A0〉, A1

i =〈∂iR,A1〉+〈∂in,A0〉, Ay=A0
y+µyA1

y+O(µ2), A0
y=〈n,A0〉, A1

y=〈n,A1〉=
0, Pi =pi −A0

i , and P̂y =py −A0
y .

To describe the so-called slow modes, we need to compute H′
2 under the assumption that

Pi =0, vext =0, and ∂H/∂t=0. We obtain

G(x)=− (κ1 −κ2)
2

8
− 1

2g1/4
∂i

[
g1/2gij ∂j

(
1
g1/4

)]
. (4.29)

This term is independent of y and p̂y and contains only geometric characteristics of the
embedding (the first summand) and the limiting manifold (the second summand). We call it
a geometric potential.

4.5.4. Effective Hamiltonians of longitudinal motion
Now we present χν0 and the effective “adiabatic” Hamiltonians Hν

eff . The index ν enumerates
the Hamiltonians Hν

eff which, in our problem, is called the effective adiabatic Hamiltonian on
the ν-th subband of the size quantization. Substituting the function χν0 = exp(iy〈n,A0〉)wν in
(3.12) with H0 =H′

0, we obtain

Hν
eff (p, x, t)=

1
2
gijPiPj +vext

(
R(x), t

)+ εν⊥(x), χ0 = exp(iy〈n,A0〉)wν. (4.30)

where wν(x, y) and εν⊥(x) are the respective eigenfunction and eigenvalue of the following
problem:

(
−1

2
∂2

∂y2
+vint(x, y)

)
wν(x, y)= εν⊥(x)wν(x, y), wν(x, Y1(x))=wν(x,Y2(x))=0. (4.31)

It is well known that the spectrum of this problem is nondegenerate, thus the symbols L
and χν are scalar functions. For the model potential vint(x, y)= (y/D(x))2m, m> 0 consid-
ered in Section 4.5.2, we obtain εν⊥(x)= (d(0)/d(x))2εν⊥(0), where d(x)=D(x) m

m+1 d(0) is the
dispersion of the state with energy εν⊥(x). Assuming that the width of the film is proportional
to d(x), we conclude that D(x)

m
m+1 is the coefficient of homothety. As m→∞, this coefficient

tends to D(x). So we obtain the natural result stating that, in the model of an empty film
with rigid walls, the width of the film is equal to the distance between the walls.

Let us present the first correction µL1 in an expansion of the symbol of the effective Ham-
iltonian of longitudinal motion. It is given by formula (3.16).

Using the formula for χν0 and the expansion of the gauge condition ∂i(γ
ijAj ) +

1/2γ ijAi∂j (log γ )+ ∂yAy + 1/2Ay∂y(log γ )= 0 with respect to y=µy′, we may easily obtain
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the relations

〈
wν, ∂jw

ν
〉
y
=0,

〈
χν0 ,

∂χν0

∂t

〉
y

= iY
〈
n,
∂A0

∂t

〉
,

〈
χν0 ,

∂Heff

∂pj

∂χν0

∂xj

〉
y

= iYgijPi∂j 〈n,A0〉 ,

where Y =〈χν0 , yχν0 〉y , and

YgijPi〈∂jR,A1〉=−YgijPi
〈
n, ∂jA0

〉=1/2〈H,�〉,
∂i(g

ijA0
j )+

1
2
gijA0

i ∂j (log g)+A0
y [∂y(log γ )]y=0 =0, g

ij
,i pj − ∂i(gijA0

j )= ∂i(gijPj ). (4.32)

From this, we find

L1 =−Yαij gjkPiPk − 〈E(R(x), t), Yn
〉−〈H,�〉− i

2
∂i(g

ijPj ), (4.33)

where �= [Yn,PPP ], PPP = gijPi∂jR, and E = −∇vext − T (∂A0/∂t). We shall see below that the
correction L2 is important in the construction of the leading term of the asymptotic solution
to the effective equation of adiabatic (longitudinal) motion only under the assumptions Pi=0,
vext =0, and ∂H/∂t=0. In this case, it coincides with the “geometric” potential G(x) (4.29).

4.6. Nanophysics: wave dynamics in nanotubes

4.6.1. The Pauli operator
Lengthy molecules consisting of a great many atoms situated on cylinder-type spatial surfaces
are called nanotubes [63–70]. The surface of such tubes can have some additional internal tor-
sion. The nanotube diameter d0 ∼ 1 nm (10 Å) is comparable with the de Broglie wavelength
λ=2π/kF ∼1 nm of an electron with energy of the order of the Fermi energy εF ∼1 eV, and
the nanotube characteristic length l0 is significantly larger than d0.

In the approximation of the strong coupling method, the wave functions in nanotubes are
determined by the nonrelativistic one-particle Hamiltonian, i.e., by the Pauli operator with
the spin-orbit interaction taken into account:

Ĥ= P̂2

2m
+vint(r)+vext(r, t)− e–h

2mc
〈σ ,H〉+ ĤSO, P̂=−i–h∇ − e

c
A(r, t). (4.34)

Here r ∈R
3 is the radius vector of a point in a neighborhood of the tube, ĤSO is the oper-

ator of interaction of the electron spin with the electric field of the crystal [71]: ĤSO =
α
〈
σ ,
[∇vint, P̂

]〉
, and α is the constant of spin-orbit interaction. This Hamiltonian differs from

that in a nanofilm (4.22) only by the presence of terms describing spin effects. Thus, all the
notation is the same.

In this section we consider some of results published in [72–74].

4.6.2. Curvilinear coordinates in tubes
As in the case of thin films, it is convenient to perform all arguments by using a special sys-
tem of curvilinear coordinates. We assume that the tube axis (the curve) γ is given by the
equation r = l0R(x), r ∈ R

3, where R(x) is a smooth vector function and x ∈ R is a natural
parameter on γ (the tube length is counted from a certain point x∗), |∂xR(x)|=1, ∂x =∂/∂x.
If |∂2

xR| �= 0, the Frenet trihedron can be determined. The curvature k(x)= |∂2
xR| and the

torsion κ(x) of the curve γ are connected by the Frenet trihedron
{
∂xR,n = ∂2

xR/|∂2
xR|,b =

[∂xR,n]
}

at each point x by the formulas ∂xn=−κb−k∂xR and ∂xb=κn.
By �(x) we denote the plane intersecting the tube axis at the point R(x) orthogonally

to the axis; the section of the tube by this plane (the area in �(x)) is denoted by �(x),
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the boundary of �(x) by ∂�(x). Then the tube is the union of the areas �(x), and its
boundary is the union of ∂�(x). The “physical meaning” of the boundary ∂�(x) and of the
boundary conditions will be discussed later. We introduce dimensionless coordinates (x, y1, y2)

determined by the relations r = l0R(x)+ y, y = d0y1n1(x)+ d0y2n2(x), where {n1(x),n2(x)} is
the basis in the plane �(x).

If we put n1 = n, n2 = b, then the coordinates thus introduced will be nonorthogonal. It
is convenient to introduce orthogonal coordinates (see [75, 76]). First, let {n1(x),n2(x)} be a
certain orthonormal basis in the plane �(x) smoothly depending on x (in general, this basis
does not coincide with n,b); and let θ(x) be the angle between the vectors n and n1. Then,
along with the torsion κ, we can introduce an “effective torsion” κeff =−〈∂xn1,n2〉=κ −∂xθ .
Choosing the angle θ(x) (along with {n1(x),n2(x)}) so that ∂xθ =κ, we let κeff be zero. The
coordinates thus constructed are orthogonal (around the tube axis, where they are specified).
The components of the metric tensor gij , i, j ={x, y1, y2} in these coordinates are determined
as follows: g00 =G= (1−k〈y,n〉)2, g11 =g22 =1, and gij =0, i �= j . Everywhere below we shall
use these coordinates. All formulas obtained below are valid in the case of a straight axis if
we set k(x)=0 and κ(x)=0. If k(x) �=0, then y1 and y2 are the coordinates only in the area
where 1−k〈y,n〉>0. It follows from the considerations about the tube curvature given below
that these coordinates are determined in the area of the tube axis under study.

4.6.3. Boundary conditions and geometry of nanotubes
As in the case of a nanofilm, the “surface” of a nanotube can be simulated by “rigid” and
“soft” walls. The rigid walls are determined by the imaginary surface of the tube and the
Dirichlet conditions on this surface. The soft walls are simulated by an appropriate choice
of the crystal potential vint(y, x) rapidly increasing while approaching the imaginary sur-
face of the tube and creating a potential well where the electron wave function is localized.
Outside this well, the wave function is exponentially small. We shall consider tubes whose
cross-section by the plane �(x) rotates with respect to the basis

{
n1(x),n2(x)

}
in which the

metric tensor is diagonal, and simultaneously expands in the plane x= const with respect to
the point R(x). We define the tube’s chirality as follows: we fix a cross-section �x∗ for some
x∗ ∈ γ and assume that, at a point x �= x∗, the cross-section �x is obtained from �x∗ by a
turn through an angle �(x) (i.e., through an “angle of internal torsion” with respect to the
basis

{
n1(x),n2(x)

}
) and by expanding by a factor D(x).

The domain �(x) can be introduced as a multiply connected domain, for example, in the
form of a circular or an elliptic annulus. The adequacy of this representation depends on the
form of the crystal potential in a given nanotube. If the domain �(x) is simply connected,
then, in the physical literature, such a nanotube is called a “quantum wire” [34, 35].

4.6.4. Operator-valued symbol
The way of introducing dimensionless variables in a nanotube is the same as in the previous
Example 4.5. It is convenient to pick out the factor G−1/4 from the wave function �, where
G is the determinant of the metric tensor in the variables (x, y1, y2), i.e., to substitute � =
G−1/4� ′ in the original equation. Then the function � ′ satisfies the equation iµ� ′

t = Ĥ′� ′,
Ĥ′G1/4HG−1/4. In what follows, we shall use the wave function � ′ and the Hamiltonian H′.
After some transformations, the quantum Hamiltonian Ĥ′ takes the standard form (2.2) with
the operator-valued symbol

H′ =H′
0 +µH′

1 +µ2(G(x)+ H̃′
2)+O(µ3),
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where

H′
0 = P2

0

2
+vext(R(x), t)+

2∑
j=1

P̂2
j

2
+vint(x, y),

H′
1 =−1/2〈∂xR,H〉l̂+ ik/2〈n,A0〉+

(
k〈y,n〉P0 −1/2〈y⊥,H〉

)
p (4.35)

+
〈
∇vext

(
R(x), t

)+1/2[A0,H],y
〉
−1/2〈σ ,H〉+µ−1α〈σ ,M̂〉,

and we introduced the notation

P0 =p−〈∂xR,A0〉, P̂j =−i∂/∂yj −〈nj ,A0〉, j =1,2,

l̂= i(y2∂/∂y1 −y1∂/∂y2), y⊥ = [y, ∂xR]=y1n2 −y2n1, A0 =1/2
[
H(t),R(x)

]
,

M̂= ∂xR
(
∂vint
∂y1

P̂2 − ∂vint
∂y2

P̂1

)
+n1

∂vint
∂y2

P0 −n2
∂vint
∂y1

P0.

(4.36)

For the symbol H′
2, we present only its “geometric” part G(x)=−k2/8, the “remainder”

H̃′
2 =H′

2 −G is a polynomial with respect to the momentum P0 and the components of the
magnetic field H(t) with zero constant term and with coefficients smoothly depending on
(x, y). In what follows, we shall see that the explicit form of this “remainder” is not necessary
for the construction of the leading terms of asymptotic solutions to the effective equation of
adiabatic (longitudinal) motion.

The boundary conditions (rigid and soft walls) defining the nanotube are similar to those
in the case of a nanofilm. The corresponding change will be discussed somewhat later.

4.6.5. Reduction to equations on the tube axis and the adiabatic Hamiltonian
Now we want to use the scheme of Section 3 and to find the symbol L of the effective equation
of adiabatic motion (along the tube axis). This case is characterized by the fact that the reduced
equation contains a single spatial variable. Thus, it is natural immediately to separate the factor
exp(i

∫ x
x∗〈∂xR,A0〉dx/µ) in the wave function. This separation takes the extended momentum

operator P̂ into the “short” operator p̂=−iµ∂/∂x but, in the case of a magnetic field depend-
ing on time t , gives the correction

∫ x
x∗ 〈∂xR, ∂A0/∂t〉dx to the effective potential. Next, because

the function � is a spinor and H0 is a scalar operator, the true multiplicity of degeneration of
the term determining the reduced equation is equal to 2r (the definition of r is given later).

Taking these remarks into account, we present the solution � of Equation (2.2) in the
form

�(x, y, t,µ)= χ̂ ν
[

exp
(

i
∫ x

x∗
〈∂xR,A0〉dx/µ

)
ψν
]
, χ̂ ν =χν(

1

−iµ
∂

∂x
,

2
x, y, t,µ), (4.37)

where the symbol χν(x,p, y, t,µ)= χν0 (x,p, y, t,µ)+µχν1 (x,p, y, t,µ)+ · · · of the (pseudo)
differential operator χ̂ ν(x,p, y, t,µ) is a matrix function consisting of 2r columns and 2 rows
and ψ is a vector function with 2r (interacting) components ψνj satisfying Equation (3.7). As
was mentioned above, to construct the leading term of the asymptotic solution to this equa-
tion, we need only to have its essential part Lν0(p, x)+µLν1(p, x)+µ2G(x).

Equation (3.12) can be reduced to the equation(
−�y

2
+vint(x, y)

)
wν = εν⊥(x)wν (4.38)

by the substitutions χν0 = exp(i〈y,A0〉)wν and

Hν
eff = p2

2
+vext(R(x), t)+ εν⊥(x)+

∫ x

0

〈
∂xR(x′),

∂A0

∂t
(x′, t)

〉
dx′. (4.39)
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Here ν is just the number of the (classical) effective Hamiltonian (or the adiabatic term)
which is also called the number of a subband of dimensional quantization. The eigenvalue
εν⊥(x) is the energy of the νth transverse mode at a point x. In contrast to the case of nano-
films, the eigenvalues εν⊥ (and hence the effective Hamiltonians) can be degenerate. The num-
ber r, which appeared above, is precisely their multiplicity. Generally speaking, r can depend
on x, and in this case the effect called “the intersection of terms or effective Hamiltonians”
can occur [77–80]. Here we assume that r is independent of x. Finally, we have

χν0 = exp(i〈y,A0〉)‖wν1 , . . . ,wνr ‖⊗Es, (4.40)

‖wν1 , . . . ,wνr ‖⊗Es =
∥∥∥∥w

ν
1(x, y) 0 · · · wνr (x, y) 0

0 wν1(x, y) · · · 0 wνr (x, y)

∥∥∥∥ ,
where ⊗ is the tensor product of matrices and Es is the unit 2 ×2 matrix. The matrix func-
tion χν1 can be found from (3.14).

Now we discuss the choice of the model potential. We will consider a tube with soft walls
and with the same elliptic cross-section [81], which can be modeled by using the potential

vint(x, y)=vint

(
x∗,

�(x)−1y
D(x)

)
, vint(x

∗, y)=
[(y1

a

)2 +
(y2

b

)2
]m
, m>0. (4.41)

Passing from the variables y= (y1, y2) to the new variables y′ = (y′
1, y

′
2) determined by the

relation y=Dγ y′, γ =m/(m+ 1), we obtain εν⊥(x)=D(x)−2γ εν⊥(0). It is easy to see that the
dispersion d(x) with respect to the coordinates y in the state wνn depends on x according to
the relation d(x)=D(x)−γ d(0). It is natural to assume that d(x) is proportional to the linear
dimensions of the tube section. Then Dγ is the “soft” coefficient of extension of the section,
and γ is the stiffness coefficient of the walls. The dependence of the energy on x can be rep-
resented as

εν⊥(x)= εν⊥(0)
d(0)2

d(x)2
. (4.42)

As m→ ∞, the potential (4.41) disappears in the interior of the domain and tends to ∞
outside this domain; the coefficient γ → 1 and d(x)→D(x)−1d(0). In the limit, we obtain
the “empty cylinder” model: vint(x

∗, y)= 0 for (y1/a)
2 + (y2/b)

2 ≤ 1 and vint(x
∗, y)= ∞ for

(y1/a)
2 + (y2/b)

2 > 1, where D(x) is the coefficient of extension (of homothety). As in the
case of nanofilms, we introduce additional “rigid” walls in the area where the wave function
is exponentially small.

Taking into account the form of potential (4.41), we obtain the relation

wνj (x, y)=
1

D(x)
wνj

(
x∗,

�(x)−1y
D(x)

)
, j =1, . . . , r. (4.43)

4.6.6. Remark
Calculating χν0 , we do not fix any special form of the functions wν1 , . . . ,w

ν
r . We assume that

they form an orthonormal basis in the eigenspace of problem (4.38) corresponding to the eigen-
value (term) εν⊥(x) with the number ν and depend smoothly on all its variables. Of course,
such a basis is not unique, and it is convenient to make its final choice in the subsequent
construction of asymptotic solutions. For example, sometimes wνj can be taken to be the ei-
genfunctions of the momentum operator l̂, i.e., in this case, it is necessary to distinguish the
states inside the term according to the projections of the orbital momentum in these states
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on the tube axis. Then the momentum matrix � is diagonal. Of course, it is also possible
to change the basis in the space of spinors; this is convenient for the case in which the spin
affects the classical dynamics (see below the “medium-wave regime”). Obviously, the choice of
a new basis is equivalent to the inclusion of some unitary 2r×2r matrix depending on x into
formula (4.37) after the operator χ̂ ν .

4.6.7. Effective Hamiltonians of longitudinal motion
Using formulas from Section 3, we obtain Lν0 and Lν1. In general, the objects �, Ly , etc. intro-
duced below also depend on the number ν (as well as χj , Lνj , and ψν). Sometimes, we omit
this dependence to simplify the notation.

The symbols Lν0 and Lν1 are determined as follows:

Lν0(p, x)=Heff Er ⊗Es,
Lν1(p, x)= ik/2〈n,A0〉Er ⊗Es +Ly ⊗Es +Er ⊗Ls +Lsy, Ls =− 1

2 〈σ ,H〉,
Ly(p, x)=

(
(∂x�)p−1/2〈∂xR,H〉

)
�−〈Y⊥,H〉p+

〈
Y,∇vext + ∂A0

∂t
+kp2n

〉
,

Lsy(p, x)=µ−1α
(
M0 ⊗〈σ , ∂xR〉+M1 ⊗〈σ ,n1〉+M2 ⊗〈σ ,n2〉

)
.

(4.44)

By Er we denote the unit r × r matrix, by �(x) we denote the r × r momentum
matrix with elements �jj ′ =

〈
wνj , l̂w

ν
j ′
〉
y
, by Mj(x) we denote the r × r matrix of the

from (M0)jj ′ = −i
〈
wνj ,

(
(∂1vint)∂2 − (∂2vint)∂1

)
wν
j ′
〉
y
, (M1)jj ′ =

〈
wνj , (∂2vint)w

ν
j ′
〉
y
p, (M2)jj ′ =

−
〈
wνj , (∂1vint)w

ν
j ′
〉
y
p, where ∂i = ∂/∂yi , and by Y(x)= Y1n1 + Y2n2, Y⊥(x)= Y2n1 − Y1n2 we

denote the three-dimensional “vectors” whose components are the 2 × 2 “dipole” matrices
(Yi)jj ′(x)=

〈
wνj , yiw

ν
j ′
〉
y
, i=1,2. As above, 〈·, ·〉y denotes integration over the variables y. The

symbol Lν2(p, x) is significantly more complicated, but we need only a part of it, viz, the so-
called “geometric potential” G(x)=−(k2(x)/8)Er ⊗Es . In the long-wave approximation, it is
necessary to take this term into account. It is precisely this term that generates bound states
in an empty waveguide [55].

4.6.8. Additional boundary and initial conditions
Formulas (4.44) allow one to construct the leading term of different asymptotic solutions to
the effective equation of adiabatic (longitudinal) motion of the νth subband of a dimensional
quantization. To perform more complete constructions, one has to sum solutions with differ-
ent values of ν. But from a physical point of view, one is interested in the reduced equations
with only small ν, and it usually suffices to consider the case of several ν. (In nanotubes, ν, as
a rule, does not exceed 7 [64]). This fact turns out to be very important later in the study of
equations in curved waveguides and tubes and allows one to ignore the applicability problem
for the asymptotic formulas obtained for large ν, and the convergence problem for the corre-
sponding series with respect to ν. For this reason, it suffices to pose the additional boundary
and initial conditions already not for the original equation, but for finite (here one-dimensional)
(simplified) equations of the form (3.7). Using the physical terminology, we can say that it is of
interest to study the longitudinal dynamics of a small set of subregions of transverse quan-
tization. The corresponding additional conditions for the case of spatial waveguides will be
posed accurately below.
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5. Asymptotic solutions to the effective equations of adiabatic motion

Now we want to discuss the question about solutions to the reduced effective equations of
adiabatic motion. The existence of the adiabatic parameter µ allows one to separate the fast
motion from the adiabatic motion (the electron motion from the nuclei motion in a molecule,
the transverse motion from the longitudinal motion in a waveguide, electron waves from the
lattice oscillations in crystals, etc.). A very important fact is that the parameter µ slightly
depends on the energy of the adiabatic motion in a certain range where it varies. The fact
that the adiabatic approximation holds for the entire region of energies of adiabatic motion
is well known in physical literature (see, e.g., [82]). The adiabatic motion can be essentially
different for different energies from this region. This fact is important if one is interested in
the construction of asymptotic or exact solutions to the reduced equation of adiabatic motion
describing different physical processes (and corresponding to different energies). This means
that asymptotic and sometimes exact solutions are of different type and thus the process of
determining the leading (or essential) part of the symbol L should be revised. For instance,
some parts of the correction L1 must be moved to the leading part of L. As we also men-
tioned, this fact can, in turn, change the definition of the characteristics of the reduced equa-
tion and, in particular, lead to the “semiclassical splitting” of terms in the degenerate case
(when r �= 1). In the case of nanotubes, this effect shows how the spin affects the determi-
nation of classical characteristics. We think that the best way to explain these phenomena is
to consider a simple nontrivial example which, in our opinion, is the problem of quantum
waves in nanotubes. Thus, we restrict ourselves to this example bearing in mind its impor-
tance. Moreover, it seems advisable to explain the main ideas and considerations with the
example of the Schrödinger equation with the Hamiltonian

Ĥ=−µ
2

2
�x − 1

2
�y +v(x, y), (5.1)

where x ∈ R
n and y ∈ R

k. This will be done in Section 5.1. If one chooses an appropriate
potential v(x, y), this equation describes problems of molecular physics, as well as of quan-
tum waveguides. The ideas from Section 5.1 are applied to the problem of quantum waves in
nanotubes in Section 5.2.

As we mentioned above, the semiclassical analysis of the reduced effective equation for
adiabatic motion is well developed and the solutions for the above-listed problems are given in
the simplest form by using the Maslov canonical operator [6, 83]. To obtain explicit formulas
is a task which must be tackled in concrete situations. There are many publications devoted
to the Maslov canonical operator. Here we only note that this is actually a certain algorithm
whose realization, as well as the process of obtaining an answer appropriate from an applica-
tions point of view (e.g., solution plots, calculation of scattering data, beating frequency, etc.),
even in the one-dimensional situation, requires additional effort and the use of computers. A
detailed description of the solutions based on this algorithm and concrete physical results are
outside the scope of this work. Such results are the focus of other publications (see, e.g., [84,
85]). Here, in Section 5.3, we will only very briefly describe the asymptotic solutions and the
simplest physical results. This remark also concerns all the examples considered in this paper.

The majority of the ideas stated below in Section 5.1 can be generalized to other examples
that were discussed above. Nevertheless, it is necessary to emphasize that a “simple” Ham-
iltonian of the form (5.1) has a very special form, and hence some effects related to this
Hamiltonian do not occur in examples with other Hamiltonians. On the other hand, if the
Hamiltonian has a different form, then other interesting effects may appear.
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5.1. General considerations

5.1.1. Internal and external parameters
In the examples under study, we implicitly assume that the dimensionless coefficients (e.g., the
potential vext in nanofilms and nanotubes) is independent of µ. Indeed, in real situations, it
is sometimes natural to assume that the coefficients can depend on both µ and other param-
eters. These parameters characterize the kinetic energy of adiabatic motion, the strength of
external fields, the strength of interactions, etc. In this case, the functions χν0 , χν1 , . . . , Lν0,
Lν1, . . . in formula (3.9) also depend on these parameters. Nevertheless, under appropriate
constraints, the formula for the separation of variables (3.9) remains valid. For purposes of
mathematical rigor, some constraints must be imposed on these problem parameters so as to
connect them, for example, with the parameter µ. However, in this case, one must bear in
mind that, in concrete situations, all these parameters are numbers, and such constraint for-
mulas are of a very conventional character. For this reason, to avoid cumbersome notation,
we present the explicit dependence on such parameters only when necessary.

5.1.2. Semiclassical parameter h
The fact that the solutions of the equation of adiabatic motion can be essentially different
originates from the existence of an additional parameter, which characterizes the excitations of
the adiabatic subsystem in the allowable range. To introduce this parameter, we consider the
first well-known asymptotics of Equation (2.5) corresponding to different energies in the case
of the Hamiltonian Ĥ0 = 1

2 (−iµ ∂
∂x
)2 + 1

2 (−i ∂
∂y
)2 +v(x, y). Denote, for the moment, by 〈·, ·〉 the

inner product in the original configuration space. The kinetic energies of fast and adiabatic
motions in this situation are Kf =〈�, 1

2 (−i ∂
∂y
)2�〉 and Ka =〈�, 1

2 (−iµ ∂
∂x
)2�〉, respectively.

As we mentioned above, according to [6], the semiclassical solutions to Equation (3.7) have
the WKB-form � ≈ χ(∂S/∂x, x, y)ψ(x, t,µ), ψ ≈ exp(iS(x, t)/µ)ϕ(x, t,µ), where the func-
tion ϕ(x, t,µ) depends regularly on µ. In this case, the kinetic energies of fast and adia-
batic motions have the same order: Kf ∼Ka ∼1. This solution corresponds to the excited state
of adiabatic motion. On the other hand, Born and Oppenheimer [1, 3] constructed the har-
monic-oscillator-type solution � ≈ χ(x, y,µ)ψ(x,µ), ψ ≈ exp(−x2/µ). This solution corre-
sponds to the kinetic energy Ka ∼µ; hence the energy of adiabatic (nuclei) motion in this
case is much smaller than the energy of fast motion. Further, in the theory of waveguides,
we sometimes have solutions of the form �≈χ(y, x,µ)ψ(x, t,µ), where χ(y, x,µ), ψ(x, t,µ)
depend regularly on µ. For these solutions, we obtain Ka ∼µ2. The above-listed different as-
ymptotics can be classified by the parameter h=µ√

Kf/Ka ⇔ Ka/Kf ∼µ2/h2. We call h the
semiclassical parameter. Let us emphasize that the adiabatic parameter is always assumed to
be small and, conversely, the parameter h can be small but also ∼1.

This parameter can be explained in another way. For clarity, we consider the plain straight
quantum waveguide and, for a while, return to dimensional variables. We have the diameter
d0 and the length l0 of the waveguide. Recall that our goal is to construct asymptotic solu-
tions of the reduced equation which describe the motion along the tube axis in a sufficiently
wide range of longitudinal energies and the transverse wavelength λ⊥ ∼ d0. To the longitudi-
nal energy, there corresponds the characteristic de Broglie wavelength λ‖ =–h/p‖, where p‖ is
the dimensional momentum of longitudinal motion. Now the “semiclassical” parameter is h=
λ‖/l0. In other words, the parameter h determines the “smoothness” of the function ψ (h−1

is the number of oscillations at the distance ∼ l0) and agrees with the estimation of its deriv-
atives: 〈ψ, ∂ψ

∂x
〉∼h−1.
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We again consider the example of an empty waveguide. Then the energy of the longitu-
dinal motion on the ν-th subband of transversal quantization has the form: p2

‖/2m+veff (x),
where veff (x)= vext(x)+ ν2π2ε⊥, ε⊥ = –h2/(2md2

0 ). Denote by p⊥ the transverse momentum.
Taking into account the relation between the de Broglie wavelength and the corresponding

momentum, we obtain p‖
p⊥ ∼ –h/λ‖

–h/λ⊥
∼ d/l0
λ‖/l0 ∼ µ

h
. Thus, the kinetic energies of longitudinal (adia-

batic) and transverse (fast) motions satisfy the relations Ka/Kf ∼µ2/h2 and Kf ∼ε⊥. Now we
return to dimensionless variables. Then the dimensionless longitudinal kinetic energy is Ka =
p2

‖/2∼µ2/h2. It is clear that, if a particle moves along the waveguide, then the kinetic energy
can vary under the action of the force f =−∂veff/∂x. For this force f not to accelerate the
particle so that its kinetic energy be of an order different from µ2/h2, it is necessary that its
work does not exceed, in the order of magnitude, the parameter of the characteristic kinetic
energy corresponding to the initial momentum. In dimensionless variables, to the distance ∼ l0
there corresponds an interval ∼1. Hence the work of the force f is of the order of the deriva-
tive ∂veff/∂x. This implies that the effective potential must have the form veff =v0

eff + µ2

h2 v
1
eff (x),

where v0
eff = const and v1

eff (x) can, in general, regularly depend on the parameters µ and h.
Moreover, the work can be even equal to zero, since the characteristic longitudinal momen-
tum is determined not only by the variable part v1

eff (x) of the effective potential, but also by
the “input” momentum of the wave packet under study (i.e., by the gradient of the phase
of the wave function at the initial time instant in the Cauchy problem or by the momentum
of the incident wave in the scattering problem). In the last case, the asymptotics of the wave
function can be obtained by using the well-known Born approximation.

Remark
We point out that veff is determined by both the external field and the field of the crystal.
Therefore in the case of a quantum waveguide, the above constraints lead, in particular, to
the assumption that the geometric parameters of the waveguide, i.e., the curvature (and tor-
sion) of its axis, the width, etc., vary sufficiently “slowly.”

5.1.3. Characteristic time scale and the reduced equation consistent with this scale
The question concerning the time scaling is nontrivial and, generally speaking, can be
resolved separately in each concrete problem. It is natural to understand what characterisitc
time is required for a quantum particle to traverse a certain characteristic distance. For prob-
lems in nanotubes, the characteristic distance is the total tube length (e.g., in the scattering
problem or in the problem of the wavetrain propagation) or the size of the “localization area”
of the wave function in the problem of bound states. For the moment, we assume the charac-
teristic distance to be of the order of l0 in dimensional variables or to be ∼1 in dimensionless
variables. One has to replace the time scaling by the energy scaling in the case of stationary
problems (for instance, in problems of electron-phonon interaction or in molecular physics).

Remark
To introduce the characteristic time scale in the general case, we can use the following ideas.
It is clear that the characteristic time scale is t ∼ a/〈v〉, where a is the characteristic dis-
tance for adiabatic motion and 〈v〉 is the mean velocity. Generally speaking, a as well as 〈v〉
depend on the “longitudinal” kinetic energy. In quantum mechanics, we have 〈v〉 = d〈x〉/dt .
Using (2.2), we obtain d〈x〉/dt∼ iµ−1〈[p̂2/2, x]〉=〈p̂〉=µ/h (cf. Section 3.3.3). Thus we have
t ∼ (h/µ)a. For the scattering problem, the wavetrain-propagation problem and some other



216 V.V. Belov et al.

problems, we can set a∼1. For lower-bound states and trapped modes we have to set a∼h∼√
〈(�x)2〉.

The dimensionless time t used in the general scheme for Equation (2.2) was actually cho-
sen for the case p⊥ ∼p‖, i.e., for the case µ/h∼1. If this relation does not hold, the time of
passage of a particle through the waveguide, which is naturally understood as the character-
istic time of the problem, must be multiplied by the factor (h/µ). Therefore, instead of t , it
is convenient to introduce a new dimensionless time t ′ by the relation t= (h/µ)t ′.

In the case of nanotubes this redefining of the time scale becomes consistent with the
preceding physical argument because of the following transformations in (3.7). The term
v0

eff results only in a displacement (renormalization) of the energy in the stationary problem
generated by the reduced equation; or the factor exp(−iv0

eff t
′/µ) appears in the wave func-

tion ψν of the nonstationary Schrödinger equation (3.7). Taking this into account, we rep-
resent the solution of this equation in the form ψν = exp(−iv0

eff t
′/µ)ψ ′ν , where ψ ′ν(x, t) is a

new unknown function. Since we assume that p∼µ/h, it is natural to divide the equation by
the parameter µ2/h2. In the left-hand side this gives the derivatives i(h2/µ)

∂ψ ′ν
∂t ′ , which, after

the above change of time, take the form ih∂ψ
′ν

∂t ′ . It is important to point out that this trans-
formation concerns only the time variable: the variables x and y are not transformed. As a
result, instead of (3.7) and (4.44) taking the corrections Lν1, Lν2, etc., into account, we obtain
the equation (the primes are omitted):

ih
∂ψν

∂t
=
{

1
2

(
−ih

∂

∂x

)2

+v1
eff + h2

µ

[
Lν1

(µ
h
(

1

−ih
∂

∂x
),

2
x
)

+µLν2
(µ
h
(

1

−ih
∂

∂x
),

2
x
)

+· · ·
]}
ψν.

(5.2)

5.1.4. Accuracy of asymptotic expansions
The number of terms in the expansion of the intertwining operator χ̂ and the operator L̂
can be arbitrarily large. However, as we already mentioned, to calculate terms of these series
explicitly, even lower-order ones, is, as a rule, a very complicated problem. Therefore, it is nat-
ural to consider only the terms for which one can correctly estimate the leading term of the
asymptotics of the wave function or of the energy value. It is reasonable that the notion of the
“leading” term of an asymptotics can be determined not only by the adiabatic parameter µ,
but also by the “semiclassical parameter” h, which is related to the form of the coefficients
and the solution of the effective equation of adiabatic motion. We shall return to the ques-
tion about numbers of terms in the intertwining operator χ̂ and the operator L̂ later. Now
we recall well-known estimates which allow us to estimate these numbers.

Taking in account this fact, let us discuss the problem of choosing the number of terms
in the expansion of the symbols of the operator L̂ and the intertwining operator χ̂ . Again,
we restrict our consideration to the case of nanotubes, although the main ideas can be gener-
alized for the majority of the adiabatic problems listed above, including the non-self-adjoint
problems like water waves in a picnocline (problems of such type usually appear in hydrody-
namics).

Since the problem contains two parameters µ and h, we shall calculate as many terms as
we need to construct the leading term of the asymptotics with respect to max(h,µ) if h� 1
and with respect to µ if h= 1. (Recall that the parameter µ is always assumed to be small,
and the parameter h can be either small or of order O(1).) To find the minimal reasonable
number of terms in an asymptotic expansion, it is natural to use the well-known estimate for
the solution of the Cauchy problem for a nonhomogeneous Schrödinger-type equation: iε ∂φ

∂t
=
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Âφ+f , φ|t=0 =0. Here Â(t) is an essentially self-adjoint (for each t) operator in L2, and ε>
0. Let φ be a solution of this problem; then the following inequality holds for any t from the
fixed interval [0, T ]: ‖φ‖L2 ≤ T

ε
maxt∈[0,T ] ‖f ‖L2 .

We assume that ψex is an exact solution of the original equation (3.7) and �as is its
asymptotic solution of the form (3.9) and these solutions coincide at the zero time instant;
moreover, ψas satisfies the original equation with discrepancy fas. For the operator Â, we
choose the original quantum Hamiltonian and set ε=µ and T = h

µ
T0, where T0 is independent

of h and µ. Then we obtain the estimate

‖ψas −ψex‖≤ h

µ2
T0 max ‖fas‖L2 (5.3)

for the difference φ=ψas −ψex. This implies that the minimal reasonable number of terms in
the expansion of the symbols of the operators χ̂ and L̂ in formulas (3.6) and (3.8) must at
least satisfy the condition h

µ2 ‖fas‖L2 �1 for µ�1. Of course, it should be remembered that
the norm of the discrepancy fas depends on µ and h. As a heuristic argument, it is also use-
ful to apply the estimate (5.3) to the reduced Equation (3.7).

5.1.5. Classification of quantum states for longitudinal motion
We return to the passage from (3.7) to (5.2). For h� 1, to construct a wave function, it is
natural to use the semiclassical approximation. Outside a neighborhood of the focal points
(the turning points), the typical asymptotics of a wave function with characteristic wavelength
λ‖ ∼h is given by the WKB-solution

ψ(x, t)=A(x, t, h) exp
(

iS(x, t)
h

)
, A(x, t, h)=A(x, t,0)+O(h), (5.4)

where S(x, t) is the phase and A(x, t, h) is, in general, the vector amplitude. As is known [6],
in the first approximation, after the substitution of this function into the original equation,
the operator −ih ∂

∂x
is, in the leading part, replaced by ∂S

∂x
, and thus the order of the terms

in the operators h2µj−2Lνj (
2
x,

µ
h
(

1

−ih ∂
∂x
)) in (5.2) is determined by the order of the functions

Lνj (x,
µ
h
∂S
∂x
). This fact leads to the well-known conclusion that the phase S(x, t) is determined

by the classical Hamiltonian system whose Hamiltonian is the leading part of the symbol
expansion with respect to the parameter h. Bearing this in mind, it is natural to define the
operator p̂h = −ih∂/∂x, rather than the operator p̂= −iµ∂/∂x, to be the momentum oper-
ator. Clearly, for µ= h, the classical Hamiltonian is the effective Hamiltonian (3.13), but if
the adiabatic and semiclassical parameters µ and h are of different orders and h�1, then to
construct a semiclassical asymptotic scheme it is necessary to write the expansion with respect
to parameter h, assigning µ= µ(h). As we shall see later, in some cases, additional terms
from Lν1 will be included in the classical Hamiltonian (subject to the expansion with respect
to h).

Now let us discuss how many terms in the expansion of the operator in the right-hand
side of (5.2) we must have to find the leading part of its asymptotic solution. By setting ε=h
and applying the estimate (5.3) to Equation (5.2), we see that, at least intuitively, it suffices
to calculate the effective Hamiltonian (ph)2/2+v1

eff and the first correction Lν1(x,
µ
h
ph). This

conclusion is consistent with the well-known fact from the theory of semiclassical asymptot-
ics: terms of the order of h2 (and even of h1+δ, δ>0) do not affect the phase S(x, t) and the
leading part of the amplitude A(x, t,0). This conclusion has a general character and holds
always if it is assumed that µ≤h�1, i.e., for the case in which the semiclassical approxima-
tion can be used. At the same time, as we just noted, concrete formulas can essentially differ
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in the following situations: (a) if µ and h have the same order (µ∼h) and (b) if µ�h. If the
parameter h∼ 1, then the semiclassical approximation cannot be used, but Eq. (5.2) remains
to hold and can even be simplified, although in this case a part of Lν2 must be taken into
account. The existence of these differences results in the following classification of asymptotic
solutions depending on the relation between the parameters µ and h (or, which is equivalent,
depending on the relation between the longitudinal Ka and transverse Kf kinetic energies in
the waveguide).
(a) For h=µ, we have the standard “semiclassical” situation [6] or the “short-wave” regime in
which the “longitudinal” energy is of the same order as the energy of transverse motion and
d∼λ‖ � l0 in dimensional variables. Then the effective adiabatic and semiclassical Hamiltoni-
ans, as well as the corrections to them, coincide, and to find the leading term of the asympt-
otics of the wave function, the complete description of the effective Hamiltonian and the first
correction is required.
(b) In this case, which is naturally called the “medium-wave” regime, µ�h�1, the “longitu-
dinal” energy of the mode is significantly less than that of the “transverse” mode and d<λ‖ ≤√
l0d in dimensional variables. Then, expanding the correction Lν1 with respect to the param-

eter µ/h, for the symbol of the operator, we obtain

Lν =
(
(ph)2

2
+v1

eff + h2

µ
Lν1(x,0)

)
+h∂L

ν
1

∂p
(x,0)ph+h·O(µ

h
).

This implies that the nondifferential part h2

µ
Lν1(x,0) of the first adiabatic correction in the

expansion of the operator L̂ν1 can be transferred into the semiclassical effective Hamiltonian.
This is clearly seen in the case h=√

µ. Then the semiclassical effective Hamiltonian becomes

equal to (ph)2

2 +v1
eff +Lν1(x,0). Moreover, for h2 �µ, the term h2

µ
Lν1(x,0) can play a determin-

ing role. Then an argument similar to that in Section 2.6 shows that this term “accelerates”
the particle in the longitudinal direction so that the characteristic longitudinal momentum in
dimensionless variables takes the value

√
µ. In other words, in this case, for the parameter h

we must take the parameter
√
µ, and we return to the situation considered above, but with

v1
eff multiplied by a small value. Clearly, if Lν1(x,0)= 0, the above argument is meaningless.

But, as we shall see later, such a term appears in nanotubes both due to their geometry and
due to the external electromagnetic field. In this case, there arise some additional parameters,
e.g., field amplitudes, and these parameters can effectively decrease the value of Lν1(x,0) and
thus compensate the increase caused by the parameter h2/µ. We also note that the terms in
the operator L̂ν1 containing the second- and higher-order derivatives (corresponding to higher
powers in the expansion of Lν1 with respect to the variable ph) can be omitted in the calcula-
tions of the leading term of the semiclassical asymptotic solution, although, of course, these
terms do not decrease the accuracy.

Remark
If the main part of the Hamiltonian is quadratic with respect to the momenta, the
Hamiltonian preserves its form. In the other examples considered above (e.g., for equations
with rapidly oscillating coefficients, for waves in picnocline), the leading part of the adia-
batic Hamiltonian L0 depends on the momentum p. Therefore, this expansion changes the
structure of the leading part. For example, in the problem with rapidly oscillating coefficients
(electron waves in crystals), L0 is replaced by its expansion with respect to p in a more com-
plex way (non-quadratically). Moreover, this expansion, as a rule, begins with terms that are
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quadratic with respect to p. The coefficient before p2 is inversely proportional to the effective
mass (see [4]).
(c) If the parameter h∼1, the semiclassical approximation cannot be used, and the wave func-
tions oscillate, if at all, rather slowly and in the dimensional variables λ‖ ∼ l0. According to the
above, this situation is possible only if Lν1(x,0)≡ 0. But the adiabatic approximation works,
and from (5.2) one can easily derive the equation for the leading term of the asymptotics of
the (smooth) wave function ψ(x, t) on the waveguide axis. For this, it suffices to set h= 1
in (5.2) and then to let µ→0. As a result of this passage to the limit, which is naturally called
the long-wave approximation, we obtain the equation

i
∂ψ

∂t
=
[

1
2
∂2

∂x2
+v1

eff − i
∂Lν1

∂p
(x,0)

∂

∂x
+Lν2(x,0)

]
ψ.

Remark
As already noted for the Helmholtz operator in plane one-mode waveguides, such an equa-
tion was first obtained in [55], where, in particular, it was proved that one can organize a sin-
gle bound state in the waveguide by choosing an appropriate curvature of the waveguide. An
equation similar to (5.11) and several consequences of it were obtained in [31–36,57,58]. We
also note that equations of this type are close to the equations obtained as the result of aver-
aging or homogenization in the theory of wave processes in media with rapidly varying char-
acteristics [40, 86–88].
(d) Finally, we can consider the case in which µ�h or, in dimensional variables, λ‖ �λ⊥ � l0.
This case is naturally called the “ultrashort-wave” regime. For Equation (5.2) to be meaning-
ful, it is necessary to impose additional constraints on the behavior of the functions Lνj in the
variable p. We consider only the case for which Lνj are polynomials of a degree not exceed-
ing 2 with respect to p. Then it is easy to show that the semiclassical approximation for any
µ�h can be applied to Equation (5.2). However, this is not sufficient for reconstructing the
asymptotic solution of the original Schrödinger equation in the waveguide from the function
ψ(x, t) by formula (3.9). For example, if the first correction χν1 in the expansion of the symbol
of the intertwining operator χ̂ ν in formula (3.6) depends linearly on p, µ≥h2, and a rapidly
oscillating function of the form (5.4) is taken to be ψ , then the function µχ̂1ψ turns out not
to be small. In this sense, the expansion of the operator χ̂ in powers of µ is not an asymp-
totic expansion. For this reason, as we shall see below, the ultrashort-wave approximation for
curved nanotubes can be used for the case in which h2 �µ�h. We can also note that, in the
ultrashort-wave case, the actual effective potential v1

eff is small so that it can be transferred
into Lν1 or even completely omitted. Then the semiclassical effective Hamiltonian coincides
with the Hamiltonian of a free particle, and hence, in this case, the semiclassics is simply the
Born approximation.

Remark
It should be remembered that, in actual calculations, the above classification (in the param-
eters µ and h) must be made more precise, which concerns the values of both the external
fields and the crystal field, as well as the relations between them. Of course, in this case, the
corrections can also be included into the leading part of the symbol (in the classical Hamilto-
nian), which, however, can unnecessarily complicate the procedure for constructing the asymp-
totic solutions. On the other hand, as already noted, in a real situation, each parameter is a
concrete small number, and hence the further detailing of how the effective Hamiltonian and
corrections to it depend on the relation between the parameters µ and h has an academic,
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rather than practical, character. Taking this consideration into account, it is convenient, from
a mathematical point of view, to fix the relations between the parameters µ and h, assum-
ing for the respective regimes that (a), h=µ, (b), h=√

µ, (c), h= 1, (d), h=µ3/2 and
including the “remaining” parts of the relations between µ and h into the coefficients of the
equation (such as the strengths of electric and magnetic fields, curvature, etc.).

The suggested classification can be used in the general situation. But in certain cases some
regimes (like the ultrashort-wave region or the long-wave region) do not exist. Anyway the
question of the existence of solutions for a certain fixed h should be solved individually.

5.1.6. The number of terms in the intertwining operator
We assume that we use the dimensionless time t consistent with the semiclassical parameter h
(see Subsection 5.1.3). Suppose that we have kept N terms in the expansion of the symbols
of the operators χ̂ ν and L̂ν determined by the coefficients χνj and Lνj . Suppose also that we
have constructed a function ψν satisfying the reduced Equation (5.2) with accuracy up to a
discrepancy f . It follows from the formulas of Section 3 that, for appropriately defined χνj
and Lνj , the substitution of the function �= χ̂ νψν in the original equation gives

ih
∂�

∂t
− h2

µ2
Ĥ�=h2µN−1F̂ψν + χ̂ νf.

Here F̂ is, in general, a pseudodifferential operator that does not change (as well as the
operator χ̂ ν) the order of the functions ψν with respect to the parameter h if the functions
oscillate with a characteristic wavelength not less than h. Applying the estimate (5.3) to this
equation, we readily come to the following conclusion: the function � differs from the exact
solution by a value of the order O(hδ), δ>0, for h�1 or of the order O(µ) for h=1 if N≥1
and the discrepancy f is equal to O(hδ+1) for h�1 or to O(µ) for h=1. Thus, the minimal
reasonable number of terms in the expansion of the operator χ̂ ν in constructing the semiclas-
sical asymptotics is equal to 2 (i.e., we must consider the zeroth- and first-order terms). But
if we are interested in the long-wave approximation (i.e., in the case h= 1), then, obviously,
in the expansion of χ̂ ν we must consider three terms (i.e., N = 2). In this case, it suffices to
solve the reduced Equation (5.2) up to O(µ).

The problem of calculating the symbols of the operators χ̂ ν and L̂ν is quite similar to
problems in perturbation theory for operators with discrete spectrum (in particular, matri-
ces), and the function Lν is similar to an eigenvalue, while χν is similar to an eigenfunc-
tion. The terms of the expansion of the symbols χν and Lν are calculated successively, but
the explicit calculation of Lνj precedes the calculation of χνj and is based on the fact that χνj
exists. On the other hand, the leading term of the asymptotics is already determined by χν0
(and, naturally, by the function ψν). Thus, in the construction of the semiclassical asympt-
otics in the minimal reasonable approximation, explicit formulas are required only for Lν0, L

ν
1

and χν0 , while in the construction of the long-wave asymptotics, explicit formulas are required
for Lν0, L

ν
1,L

ν
2 and χν0 , χ

ν
1 . Moreover, as was already discussed in Section 5.1.5 to obtain the

medium-wave and long-wave approximations (h�µ), for Lν1, it suffices to calculate this func-
tion and its first-order derivative for p=0, while for Lν2, it suffices to calculate this function
for p= 0. This fact is very important for deriving explicit formulas. It should be noted that,
although the terms µχ̂ν1ψ

ν for h�1 and (µχ̂ν1 +µ2χ̂ ν2 )ψ
ν for h∼1 are only corrections to the

leading term χ̂0ψ
ν of the asymptotic expansion, it can be described correctly only if the exis-

tence of such corrections is guaranteed, while the discrepancy obtained by a direct insertion
of the function χ̂ ν0ψ

ν into the original equation is not sufficient to prove that the difference
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between χ̂ ν0ψ
ν and the exact solution is small. Here we have the following distinction from the

standard semiclassical approximation for the scalar Schrödinger equation: in the latter case,
the substitution of the leading term of the asymptotics in the original equation readily gives
the desired small discrepancy O(h2).

5.1.7. Essential part of the quantum Hamiltonian for longitudinal motion
Thus, it follows from the analysis performed in the preceding sections that, in all cases (a)–
(d), the leading term of the asymptotic expansion of ψν (as well as of �) is completely deter-
mined (sometimes, with excessive accuracy) by the quantum Hamiltonian

L̂ν = 1
2

(
−ih

∂

∂x

)2

+v1
eff + h2

µ


Lν1

( 2
x,
µ

h
(

1

−iµ
∂

∂x
)
)

+µLν2(x,0)

 .

This Hamiltonian is naturally called the essential part of the Hamiltonian of longitudinal
motion on the ν-th subband of size quantization.

5.1.8. Semiclassical splitting of adiabatic terms
For h�µ, the correction L1(x,0) can change the effective Hamiltonians. This change can be
essentially important for the case in which the term is degenerate or (and) the original prob-
lem is a vector problem (i.e., the original quantum Hamiltonian is a matrix Hamiltonian).
Let us consider this situation in more detail. Because the original problem is self-adjoint, the
matrix L1(x,0) is Hermitian. We assume that all its eigenvalues λ1(x), . . . , λr (x) are distinct
and, along with the eigenvectors, smoothly depend on x. Moreover, to avoid any renormaliza-
tion of energy, for simplicity, we assume that λj (x) varies along the waveguide and λj =0 at
the beginning of the waveguide. Since any adiabatic term is degenerate, there is a great ambi-
guity in the choice of vector functions χνj , j =1, . . . , r, and any variation in their choice nat-
urally leads to a change of the matrix Lν1. We choose the vector functions χνj , j = 1, . . . , r,
so that the matrix Lν1(x,0) be diagonal. If 1 �h�µ (we have the “medium-wave” approxi-

mation), the expressions h2

µ
λj (x) must be added to the semiclassical Hamiltonian. Following

an argument similar to that in Section 5.1.2, we conclude that the parameter h must satisfy
the inequality

√
µ≥h�µ. We see that the semiclassical Hamiltonians (terms) 1

2 (p
h)2 +v1

eff +
h2

µ
λj become different for different j and thus the “semiclassical” separation of “adiabatic”

terms occurs. The value of this splitting depends on h2/µ and attains its maximum at h∼√
µ.

In the first approximation with respect to the parameter h2/µ, the states corresponding to
different semiclassical Hamiltonians do not interact. Thus, inside an adiabatic term, we can
asymptotically diagonalize the system for the vector function ψν . Although this asymptotic
fact turns out to be valid for any values of h from the above interval, it is clear that, for val-
ues of h close to µ, the subsequent terms of the expansion can be large, so that the above
representation of such an asymptotic “diagonalization” becomes meaningless. Therefore, the
situation with h close to µ must be considered as a situation with a degenerate term, and
it is more natural to leave the term h2

µ
λj in the original correction h2

µ
Lν1, which allows one

more adequately to take into account the interaction between the states inside an adiabatic
term. This reasoning concerns the case of the matrix correction Lν1. In the scalar situation,

the term h2

µ
Lν1(x,0) can always be included into the effective Hamiltonian, but, in general,

this does not hold in the vector case. We have no opportunity to discuss the problems touched
upon in this section in more detail. We only point out that all phenomena mentioned in this
and in the preceding sections are completely determined by the essential part of the matrix
analog of the Hamiltonian of longitudinal motion on the νth subband of size quantization.
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5.2. Essential parts of the effective Hamiltonians for longitudinal motions in
nanotubes for different regimes

The goal of this subsection is to realize the ideas from the previous subsection concerning the
problem of quantum waves in nanotubes with spin taken into account.

As already noted, the “rapidity” of the longitudinal mode is determined by the parame-
ter h. For h�1, the corresponding states (in particular, the levels of longitudinal motion) are
described by semiclassical asymptotics. Since a strong electric or magnetic field increases the
longitudinal energy of a particle while it passes through the tube, the parameter h cannot be
chosen arbitrarily and must be consistent with the strengths of the external fields contained in
the problem. For mathematical rigor, we must assume that there is a functional dependence
between the parameters µ, h and the strengths of the fields. From a physical point of view,
it is natural to speak about the values of the different terms in (4.44) in their dependence
on the “rapidity” of the longitudinal mode and the strengths of external fields. For a solu-
tion with wavelength ∼h to exist, it is necessary that the work of the effective field Eeff (x)=
−∂vext/∂x−∂ε⊥(x)/∂x−〈∂xR, ∂A0/∂t〉 along the tube does not exceed, in order of magnitude,
the characteristic kinetic energy of the longitudinal motion: ε‖ ∼µ2/h2. This implies the fol-
lowing constraints on the external fields and the “oscillation” in the dimensions of the section.
We assume that the potential of the external electric field is equal to zero at one of the tube
ends; thus, vext(R(x), t) will be equal to the work of the field along the tube. This implies
that the external potential in dimensionless variables has the order of µ2/h2. We introduce
the functions v1

ext(x, t) and λν(x) determined by the relations vext(R(x), t)= (µ2/h2)v1
ext(x, t),

εν⊥(x)= εν⊥(0)+ (µ2/h2)λν(x) and we assume that v1
ext(x, t), λ

ν(x) take values that do not
exceed unity with respect to the parameter.

In what follows, for simplicity, we assume that the function v1
ext, in fact, smoothly depends

on t ′, and we write v1
ext(x, t

′). The constraint on the effective field implies a constraint on the
character of the time-dependence of the magnetic field. We assume that H=H0 + (µ/h)H1(t

′).
We replace the “adiabatic” momentum operator p̂= −iµ∂/∂x by the “dynamic” opera-

tor p̂h=−ih∂/∂x, obtain p̂= (µ/h)p̂h, and then divide the adiabatic Hamiltonian by µ2/h2

to “compensate” the redefined momentum. This leads to the redefined classical momentum
p= (µ/h)ph and, by (4.44), to the following formula for the symbol Lν(ph, x, t ′,µ,h) of the
essential part of the quantum effective Hamiltonian L̂ν of the longitudinal motion:

Lν =
[
(ph)2

2
+v1

ext(R(x), t
′)+φ(x, t ′)+λν(x)

]
Er ⊗Es

+h
2

µ

[
−Er ⊗ 1

2
〈σ ,H〉− 1

2
〈∂xR,H〉�⊗Es +Lsy

]
+h
[
(∂x�)�−〈Y⊥,H〉

]
⊗Esph

+µ
〈

Y,∇v1
ext +

∂A1
0

∂t ′
+k(ph)2n

〉
− h2k(x)2

8
Er ⊗Es, (5.5)

where A1
0 = (1/2)[R,H1(t

′)], φ(x, t ′)= (1/2)
∫ x
x∗
〈
∂xR(x′), [R(x′), ∂H1(t

′)/∂t ′]
〉
dx′. Omitting the

primes, we obtain the desired reduced equation on the subregion of dimensional quantization
in the form:

ih
∂ψν

∂t
= L̂νψν, L̂ν =Lν(

1

−ih
∂

∂x
,

2
x, t,µ,h). (5.6)

Along with formulas (4.37) and (4.40), this equation, for different relations between µ and h,
determines the leading term of the asymptotic solutions of the original equation (2.2). Some-
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times, several terms in (5.5) can be omitted, and several terms from the “adiabatic” correction
(sometimes, matrix terms) can be transferred to the leading part of the “semiclassical” effec-
tive Hamiltonian determining, in particular, the dynamics of the classical motion of a particle
in a thin tube or, if the terminology introduced in [15, 38] is used, determining the nonstan-
dard characteristics of the original equation (2.2). We describe this “transfer” and the corre-
sponding classical systems in the next subsection.

5.2.1. Equations of classical mechanics in nanotubes with spin and the term multiplicity taken
into account

Below we perform different expansions of the function (5.5). For h� 1, we set Lν = Lν0 +
hLν1 + . . . , where Lν0 denotes the terms larger than h and hLν1 denotes the terms ∼h. Accord-
ing to [15, 38], these terms allow one to reconstruct the leading term of the semiclassical as-
ymptotics completely for h�1, which outside the focal points has the form of WKB-solutions
ψν ≈exp(iSν(x, t)/h)Aν(x, t). Their phases Sν(x, t) can be determined by integrating the one-
dimensional Hamiltonian system

ṗh= ∂Hh
eff/∂x, ẋ=−∂Hh

eff/∂p
h (5.7)

with the classical Hamiltonian Hh
eff (p

h, x), which is an eigenvalue of the matrix symbol Lν0. If
the matrix Lν0 has distinct eigenvalues, the semiclassical splitting of the adiabatic term occurs,
i.e., several distinct classical Hamiltonians Hh

eff can correspond to the same adiabatic term
Heff . The vector part of the asymptotics ψν can be found from the linear “polarization” equa-
tion which contains Lν1.

We shall consider the following situations corresponding to different relations between the
parameters µ and h.
(a) Short-wave regime: h=µ. Then

Lν0 =Hh
effEr ⊗Es, Hh

eff = (ph)2

2
+vheff , vheff =v1

ext(R(x), t)+φ(x, t)+λν(x),

Lν1 =
〈

Y,∇vext +
∂A1

0

∂t
+k(ph)2n

〉
⊗Es +

[
(∂x�)�−〈Y⊥,H〉

]
⊗Esph (5.8)

+
[
−Er ⊗ 1

2
〈σ ,H〉− 1

2
〈∂xR,H〉�⊗Es +Lsy

]
.

The Hamiltonian system in this case is equivalent to the Newtonian system ẍ = −∂vheff/∂x.
By the estimates in Sections 5.1.4 and 5.1.5, the leading term of the semiclassical asymptotics,
which is determined by these classical equations, must give a good approximation in problems
with external fields |H|�1 T, Eext =|∇vext|�10−3 V/nm.
(b) Medium-wave regime: h=µ1/2. In this case, we have

Lν0 =
[
(ph)2

2
+v1

ext(R(x), t)+φ(x, t)+λν(x)
]
Er ⊗Es +W, (5.9)

W =
[
−Er ⊗ 1

2
〈σ ,H〉− 1

2
〈∂xR,H〉�⊗Es +Lsy

]
, Lν1 =

(
(∂x�)�−〈Y⊥,H〉

)
⊗Esph.

Thus, here the symbol Lν0 is a matrix symbol. Here the classical effective Hamiltonians are the
eigenvalues of the matrix Lν0. Obviously, they can be represented as the sum of the function
(ph)2/2+v1

ext(R(x), t)+φ(x, t)+λν(x) and the eigenvalues of the matrix W which, in general,
depend on ph. If they are distinct for all (ph, x), the semiclassical splitting of the adiabatic
term occurs. Obviously, these classical Hamiltonians depend on the spin terms; hence the spin
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of a particle affects its phase trajectory as follows: the energy of longitudinal motion in the
tube, in contrast to the total energy and the energy of transverse motion, is comparable with
the spin energy.

The eigenvalues of the matrix W depend on the form of the transverse section of the tube
and on the external fields. As the simplest example, we consider the case of the cylindrically
symmetric crystal potential (y1 =� cosφ, y2 =� sinφ) vint = vint(�), and wν = exp(±iνφ)uν(�).
In this case, Y=0, the eigenvalues of the matrix � are ±ν, M1 =M2 =0, M0 is the diagonal
matrix with elements ±κν, κ= 2π

∫∞
0 (∂vint(�)/∂�)(u

ν(�))2 d�, and the adiabatic term splits
into four semiclassical ones determined by the classical effective Hamiltonians (Hh

eff )
±
↑↓ =

(ph)2/2+ (vheff )
±
↑↓,

(vheff )
±
↑↓ =v1

ext(R(x), t)+φ(x, t)+λν(x)∓
1
2
〈∂xR,H〉ν+σ↑↓

∣∣∣∣12H±νµ−1ακ∂xR
∣∣∣∣ , (5.10)

where σ↑↓ =±1. In this case, we must assume that
∣∣(1/2)H±µ−1ακν∂xR

∣∣ �=0. Otherwise, the
effect of intersection of terms or of a change in the multiplicity of the characteristics occurs,
where the standard semiclassical approximation does not work (see, e.g., [4]). In this exam-
ple, the Hamiltonian system is also equivalent to the Newton system with the effective poten-
tial (vheff )

±
↑↓. The semiclassical approximation must work for external fields |H| � 1 T, Eext =

|∇vext|�10−5V/nm. We also note that (5.9) can be treated as an equation with operator-val-
ued symbol (its operator symbol is a matrix), and we can again apply the “operator” reduc-
tion to this equation.
(c) Long-wave regime: h= 1. In contrast to the above regimes, for the “long-wave” approxi-
mation to exist, it is necessary to impose additional constraints on the value of the magnetic
field. Formally, this follows from the existence of a term ∼h2/µ in the Hamiltonian (5.5). The
physical cause consists in the following. Even without spin effects taken into account, the lon-
gitudinal and transverse modes are related due to the interaction between the magnetic field
and the transverse orbital momentum, which is described by the term −(2µ)−1〈∂xR,H〉�⊗
Es . In this case, the transverse energy significantly exceeds the longitudinal energy; hence the
dynamics of longitudinal motion becomes very sensitive to small variations in the transverse
energy. In turn, the transverse energy changes because of the variation in the magnetic field
flux through the tube section due to a change in the angle between the plane of the tube
transverse section and the vector of the magnetic field H. For the magnetic fields ∼1 T cho-
sen above, this interaction accelerates the particle to energies that are not consistent with
the parameter h. To avoid the acceleration, we must take into account that εν⊥(x)= εν⊥(0)+
µ2λν(x), and H0 =0, H=µH1. This means that we consider magnetic fields �10−2 T. We also
assume that the dimensionless constant of spin-orbit interaction is α∼µ2. This implies that
the leading part of the Hamiltonian contains only the terms Lν2(0, x)|H=0, vext=0, α=0. Subse-
quent calculations of this term (see [84, Appendix A3]) lead to the last term in (5.5). As a
result, we obtain the reduced limit equation of the form

[(
−1

2
∂2

∂x2
+v1

ext(x)+φ(x, t)
)
Er ⊗Es + (∂x�)�⊗Es

(
−i ∂
∂x

)
+W

]
ψν =0

W =
(
λν(x)− k2

8

)
Er ⊗Es − 1

2
〈∂xR,H1〉�⊗Es −Er ⊗ 1

2
〈σ ,H1〉+µ−1Lsy. (5.11)

Here the semiclassical approximation cannot be used and any information about the solutions
of the reduced equation (more precisely, about the systems of equations) can be obtained
either by general qualitative methods or by numerical integration [31–36, 57, 58, 89]. As



Operator separation of variables for adiabatic problems 225

already noted for the Helmholtz operator in plane one-mode waveguides, such an equation
was first obtained in [55], where, in particular, it was proved that one can organize a sin-
gle bound state in the waveguide by choosing an appropriate curvature of the waveguide. An
equation similar to (5.11) and several consequences of it were obtained in [34, 35]. Equa-
tion (5.11) works in the case where the correction Lν1 is small. This imposes several con-
straints on the value of the constant-in-time component of the magnetic field H0 ∼µ and on
the constant of the spin-orbit interaction α∼µ2.
(d) Ultrashort-wave regime: µ3/2 �h�µ. In the case of ultrashort-wave approximation, the
external magnetic and electric fields can be stronger than those considered above. Namely,
vext ∼ µ2/h2, |H(t)| ∼ µ/h, |H| � 10 T. Introducing the notation vext = (µ2/h2)v1

ext, H(t)=
(µ/h)H1(t) and omitting the primes, we obtain

Lν0 =Hh
eff Er ⊗Es + (h2µ−2)εν⊥(x)+µ

(
−〈Y⊥,H〉ph+

〈
Y,∇vext + ∂A0

∂t
+k(ph)2n

〉)
,

Lν1 =
(
ph(∂x�)−1/2〈∂xR,H1〉

)
�−1/2〈σ ,H1〉+µ−1α

(
M1 ⊗〈σ ,n1〉ph+M2 ⊗〈σ ,n2〉ph

)
,

(5.12)

where Hh
eff = (ph)2/2 + vext(x)+ φ. Although Lν0 is a matrix symbol in this case, its leading

part is Hh
eff Er ⊗Es . Nevertheless, the matrix correction ∼µ>h can lead to the splitting of

the adiabatic term and, in particular, to additional terms in the phase of the wave function
∼µ/h, µ2/h, . . . , which are, in general, different for each of the states contained inside the
adiabatic term.

5.3. Examples of asymptotic solutions for some problems in nanotubes

As we mentioned above, here we have no opportunity to describe in detail asymptotic solu-
tions of the effective equation of adiabatic motion in nanotubes and particularly to discuss
concrete physical conclusions. This discussion requires a special publication (see [85]) and
probably not a single one. Here we only want very briefly to outline the structure of semi-
classical asymptotics for some natural problems.

5.3.1. Wave trains propagation
It is natural to formulate the problem of wave-train propagation for the reduced equation
(5.6). We consider the general case when Lν0 and Lν1 are matrices. Let Hh

eff be the certain
eigenvalue of the matrix Lν0. If Hh

eff is degenerate, to restrict on the subspace corresponding to
it, we can apply the reduction of Section 3 (by parameter h instead of µ) once again. So we
have to restrict the operator Lν1 to the subspace corresponding to the eigenvalue Hh

eff . After
the reduction our problem has the following form: the leading part of the matrix Hamilto-
nian is proportional to unity r ′ × r ′-matrix with coefficient Hh

eff , where r ′ is the multiplicity
of degeneracy of eigenvalue Hh

eff , and Lν1 is a r ′ × r ′-matrix. Thus we can always reduce the
problem of the construction of semiclassical solutions to the problem with the leading term
proportional to the unity matrix. We construct an asymptotic solution assuming that the ini-
tial problem is reduced to this form. In order to not overload the notation we will write Lν1
for the matrix restricted to the proper subspace corresponding to eigenvalue Hh

eff .

Let ψν(x,0)=ψ0(x)= exp
(

iS0(x)
h

)
ϕ0(x), where the phase S0(x) is a smooth function and

ϕ0(x) is a 2r-dimensional smooth vector function of x ∈ R with compact support M. Then
in the semiclassical approximation the solution to (5.6) is determined by the solution to the
Hamiltonian system (5.7) with Hamiltonian Hh

eff = 1
2p

h+vheff , where vheff depending on regimes
of longitudinal motion are defined by formulas (5.8), (5.10) with initial conditions ph(0)=
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∂S0/∂x(x0), x(0)=x0. Denote its solution by ph=π(t, x0), x=ξ(t, x0). Suppose that J (x0, t)=
dξ/dx0 �= 0 for t ∈ [0, t∗] and x0 ∈ M. Then the equation x = ξ(x0, t) is uniquely solvable,
x0 =X0(x, t)∈M, and, for t ∈ [0, t∗], the asymptotic solution to the Cauchy problem for sys-
tem (5.6) with initial condition ψ |t=0 =ψ0(x, h) has the form:

ψ(x, t)=
[

exp
(

iS(x0, t)

h

)(
ϕ(x0, t)√
J (x0, t)

+O(h)
)]

x0=X0(x,t)

, (5.13)

S(x0, t)=S0(x0)+
∫ t

0

(
πi
∂Hh

eff (π, ξ, t)

∂πi
−Hh

eff (π, ξ, t)

)
dt. (5.14)

Function ϕ(x0, t) satisfies the following equation:

dϕ
dt

+ iL1ϕ=0 (5.15)

with initial condition ϕ(x0,0)=ϕ0(x0).
For t >t∗ the asymptotics of the solution is specified by use of the Maslov canonical oper-

ator K�t (see [83, 90]) on the curves �1
t ={x= ξ(x0, t), p=π(x0, t)}: ψ=K�tψ0.

Remark
In the case of a finite effective potential the effect of splitting of the incoming wave train into
two space components can appear. They are partially reflected and partially transmitted, con-
taining harmonics E<max vheff and and E>max vheff , respectively.

5.3.2. Plane wave scattering
Consider a nanotube having the following structure. For x < x− and x > x+ (x± = const),
this tube has a rectilinear axis, constant torsion angles �− and �+, and contraction coeffi-
cients D− and D+ at the ends. Suppose that H = 0, vext and vint do not depend on t ,
vext(R(x))= {v−

ext for x <x−, v+
ext for x >x+}, vint(x, y)= {v−

int(y) for x <x−, v+
int(y) for x >

x+}. Then for x <x− and E>v−
ext + εν−, the system has a solution of the form exp((−iEt +

ip−x)/h)gνk− (y), k=1, . . . ,2r, which represents a plane wave propagating along the tube axis
with vector (spinor) amplitude gνk− (y). Vector gνk− (y) and εν− are the eigenfunction and eigen-
value of the following problem, correspondingly:

(
−1

2
∂2g

∂y2
+v−

int(y)+α〈σ ,M̂〉
)
gνk− (y)= εν−gνk− (y), n0 = ∂xR, (5.16)

M̂= ∂xR
(
(∂1vint)∂2 − (∂2vint)∂1

)
+n1(∂2vint)p−n2(∂1vint)p. (5.17)

Remark
Note that the eigenfunction gνk is not the product wνj (y)⊗η of “pure state” inside the term
wνj (y) and “pure spin state” ηk (ηk does not depend on y). This means that we cannot sep-
arate spin states and states inside one term. Since the parameter α�1, to construct gνk one
can use perturbation theory. To construct solutions in the case when vint =y2

1 +y2
2 (parabolic

confinement) one has to use second-order perturbation theory.
As exact solutions “at infinity” are not products of “pure states,” we need to expand them

with respect to the basis wνj (y)⊗ηk. We obtain:

gνk− (y)=‖wν1(y), . . . ,wνr (y)‖⊗Esϕ−, ϕ− ={ϕ−
1 , . . . , ϕ

−
2r}T . (5.18)
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The evolution of “initial scattering data” for the reduced equation is determined by the fol-
lowing transport equation:

dϕ
dt

+ iLν1ϕ=0, ϕ→ϕ−, t→−∞. (5.19)

The final scattering data for the reduced equation is ϕ+ = limt→∞ ϕ(t). So we obtain the
final scattering data for the original problem in the form:

gνk
′

+ (y)=‖wν1(y), . . . ,wνr (y)‖⊗Esϕ+. (5.20)

In the semiclassical approximation this problem has a 2r-dimensional family of asymptotic
solutions of the form ψ(x,E)�K�1(E){ϕ(t)}, where K�1(E) is the Maslov canonical operator
on the nonclosed curve �1(E)={Hh

eff =E : ph=ph(t), x=x(t)}, t is the proper time (param-

eter on �1(E)): dx/dt=±
√

2(E−vheff (x)). Let E>vheff (x) for each x. Then with an accuracy
exponential with respect to h→0, we have a passage of the incident wave above the barrier;
as x→±∞

ψ(x,E,h)→ 1√
p±

exp
(

i
h
p±x

)
ϕ±, p± =

√
2(E−v−

ext − εν−). (5.21)

If E <max vheff (x) at some points of the tube axis, the incident wave is reflected off the
barrier with an accuracy exponential with respect to h. In the domain x < xf (E), where
xf is the rotation point at the energy level E = vheff (xf (E)), ψ(x,E,h) is the sum ψ− +
e−iπ/2ψ+(x,E,h) of the incident and reflected waves ψ±(x,E,h) with x < xf (E) (at x >
xf (E)ψ(x,E,h)=O(h∞)). As x→−∞, we have

ψ± → 1√
p

exp
(

± i
h
px

)
ϕ±. (5.22)

The form of the nanotube after barrier modulo exponentially small corrections does not influ-
ence the solution. Therefore, the part of the tube behind the barrier can be removed. One
can see from the formulas (4.42) that the barrier appears not only because of the external
potential but also because of the narrowing of the tube (D(x)→0). Thus the constructed as-
ymptotics model the situation when the end of the tube narrows conically-like, which results
in the appearance of a barrier, that is, a turning point in the system (5.6). It results in a sharp
increase of the wavefunction in the neighborhood of the conical end of the tube; this is prob-
ably related to the effect of the luminosity of the tube end.

5.3.3. Bound states. Asymptotic eigenvalues
Suppose that the potential vext and the magnetic field H do not depend on t and that the
effective potential vheff (R(x)) has a stable minimum point x0. In its neighborhood vheff (R(x))
has the form of a potential well, which generates a family of T (E)-periodic trajectories
ξ(t,E), π(t,E) of system (5.7) parametrized by the energy E = (ph)2

2 + vheff (x). Substituting
them in (5.15), we obtain a system of the form ϕ̇=−G(t)ϕ with a unitary matrix that is T -
periodic with respect to t . We can form a basis in the space of their solutions from vector-
functions of the form zj (t,E) exp(iβj (E)t), where j = 1,2, . . .2r, z(t,E) are T -periodic in t ,
and the Floquet exponents βj (E) are real for all E. We choose them in such a way that |βj |
are minimal. Let Eνn be the levels determined by the Bohr-Sommerfeld quantization condi-
tion

1
2π

∮
πdξ = 1

π

xmin∫
xmin

√
2(E−vheff )dx=h

(
n+ 1

2

)
, n=0,1,2, . . . (5.23)
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Then the values numbers Eνnj =Eνn + hβj (Eνn), where j = 1,2, . . . ,2r, yield a spectral

series (sets of bound states) of the operator L̂; the O(h2)-neighborhood of Eνnj (h) necessarily
contains a point of its spectrum (continuous or discrete). Namely, if the spectrum of the orig-
inal problem on the interval E0 −ε,E0 −ε) is discrete, then the numbers Eνnj give the asympt-
otics of some of its eigenvalues. If the spectrum on this interval is continuous, these functions
apparently approximate the exponentially small bands of the spectrum (c.f. [91]).

The eigenfunctions corresponding to Eνnj (h) are determined by use of the Maslov canon-
ical operator.

5.4. Remark on the rigorous justification of the constructed asymptotic solutions

It is natural to discuss the important question about the strict justification of asymptotic solu-
tions, which can be constructed by using the formal procedures suggested above. In this paper,
we hardly touch upon this problem (see Section 5.1) whose general solution is not trivial and
requires further investigation. To study this problem, one can use at least two possible meth-
ods.

(1) One has to prove that the asymptotic solutions are close to the exact solution of the ini-
tial problem under some conditions on the coefficients of the initial equation and on the
function classes to which the solutions of the reduced equation belong. This method is
based on the technique of obtaining a series of estimates with respect to the parameters
µ and h from different diapasons.

(2) The second method of justification is to estimate the accuracy of the functions obtained,
which approximate the exact solution of the initial equation. This method seems to be
more useful, at least from a pragmatic point of view, since the obtained explicit asymp-
totic formulae for the solutions of real physical problems can be used.

5.5. Several effects in nanotubes generated by their geometry and external fields

Finally let us described very briefly several effects which one can obtain from the analysis
of the asymptotic solutions constructed above. (Some of them have already been discussed in
Section 5.1).

5.5.1. The possibility to model effective one-dimensional potentials
First let us mention some elementary, but curious, properties of the above equations, which
are caused by the possibilities of nanotechnology: changing the geometry of a tube placed in a
homogeneous electric field, one can model different one-dimensional effective potentials.

First, we consider a tube of constant cross-section whose axis is a plane curve in the plane
(r1, r2). Let an electric field of strength Eext be directed along the Ox2 axis. Then the effec-
tive potential has the form ϕ=vext

(
R(x)

)=EextR2(x). If the tube is only slightly curved with
respect to the axis r1, then we have x ≈ r1. Thus, choosing the tube axis as an appropriate
curve r2 = r2(r1), we can model the potential, the double potential well, etc.

As an example of a nonplanar tube, we consider the spiral R(x)= (ρ1 cos(x/
√
ρ2

1 +ρ2
2 ),

ρ1 sin(x/
√
ρ2

1 +ρ2
2 ), ρ2x/

√
ρ2

1 +ρ2
2 ) (ρ1 = const, ρ2 = const are parameters) in the field

Eext(0, sinα, cosα). The effective potential contains the oscillating and linearly increasing com-

ponents: ϕ(x)= − sinαEextρ1 sin(x/
√
ρ2

1 +ρ2
2 )− x cosαEextρ2/

√
ρ2

1 +ρ2
2 . If α = π/2, i.e., the

field is perpendicular to the tube axis, then we obtain a periodic potential and the equations
obtained above coincide with the Mathieu equation in the first approximation. If α= 0, i.e.,
the field is directed along the tube, we obtain the Airy equation. A more complicated example
is the case in which the tube axis is a winding of a torus: in this case, in particular, we can
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obtain almost periodic potentials. Similar results can be obtained by changing the thickness
of the tube along the tube axis.

5.5.2. Dependence of the effective one-dimensional potential on the tube thickness
It is easy to show that for the above potentials modelling the “soft” and “rigid” walls, the
effective one-dimensional potential of the longitudinal motion depends on the tube thickness
d0(x) as 1/d0(x)

2. This dependence is a pure quantum effect which is caused by size quanti-
zation. Thus, narrowing the tube, we obtain a barrier in the one-dimensional motion, while
expanding the tube, we obtain a potential well or “trap.”

5.5.3. Semiclassical splitting of the adiabatic term
The “adiabatic” terms can split in the semiclassical approximation due to spin and the mag-
netic field. In particular, if the splitting is caused by spin effects, then spin affects the “clas-
sical” trajectory. For the case in which the adiabatic term is nondegenerate, we have �= 0.
If degeneration exists, the momentum matrix � is nonzero. This results in the appearance of
an effective “dipole” that interacts with the projection of the magnetic field on the tube axis,
and thus an additional phase of the wave function (the Berry phase) appears.

5.5.4. An increase in the electron density near the endpoint of the nanotube caused by
reflection.

Since the longitudinal energy decreases with decreasing cross-section of the nanotube, in a
nanotube with a “closed” endpoint, the wave packet reflects from the closed endpoint. In
this case, near the endpoint of the nanotube, there is a sharp increase in the electron density,
which, apparently, is related to the effect of luminous emittance observed in nanotubes.

5.5.5. The Berry phase of the wave function
The term [�x� − 〈Y2n1 − Y1n2,H〉] ⊗ Esp

h in the Hamiltonian (5.5) proportional to the
momentum ph can be excluded from this Hamiltonian by a change of the wave function. This
change has the form

ψj = exp
(∫ x

x∗
λj (x)dx

)
ψ ′j , (5.24)

where λj (x) is an eigenvalue of the matrix �x�−〈Y2n1 −Y1n2,H〉. In fact, the existence of
this term results in the appearance of an additional phase of the wave function. This phase
must be consistent with the boundary conditions at the endpoints of the tube, which gives a
correction to the quantization condition. For example, we consider the Born–Kármán bound-
ary conditions that are equivalent to the case of a closed tube (the nanoannulus). While con-
structing the eigenfunctions in this case, it is necessary to require that the total phase of the
wave function be 2π -periodic, with the above adiabatic correction taken into account. It is
well known that the adiabatic phase responsible for the correction to the quantization condi-
tion is the so-called Berry phase.

If the magnetic field is zero, the Berry phase is reduced to exp
(∫ x
x∗ �j(x)d�

)
, where �j(x)

is an eigenvalue of the momentum matrix �.

5.5.6. Ultrashort modes and the state density
The correction to µχ1 becomes comparable with 1 for h=µ3/2. This means that the adia-
batic asymptotics of the form (4.37) ceases to hold. However, for h<µ and for the same total
energy, there exists a state of the form (4.37) that belongs to the next subregion of the trans-
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verse quantization. From a physical standpoint, the fact that there is no asymptotic solution
of the form (4.37) in the case of ultrashort waves in a curved tube means that such fast modes
are destroyed in passing from a straight tube to a curved tube; they “fall” to the next subre-
gions because of the interaction with the tube “walls.”

The “instability” of ultrashort modes with parameter h<µ3/2 in a curved tube can lead to
a change in the density of states and, in contrast to the straight nanotube, effectively increase
the Fermi level (cf. [92]).

5.5.7. Spin beats
The operator Lsy in the semiclassical Hamiltonian, which corresponds to spin-orbit interac-
tion, leads to a splitting of the adiabatic term into 2r semiclassical terms of the longitudi-
nal motion. To each of the semiclassical terms, there corresponds, in general, its own phase
Sνj (x, t), j = 1, . . .2r. If the variation in the phase due to the spin-orbit interaction is small,
the phase can be expanded in a series in the constant of spin-orbit interaction α. The zero
term in the expansion corresponds to the classical motion of a “spinless” particle, and the
correction results in the appearance of an envelope for the fast-oscillating exponential. Appar-
ently, the appearance of such an envelope is related to the observed effect of the electron den-
sity beating along the tube [93].

6. Concluding remarks

Let us briefly summarize the results of this paper, sometimes repeating the above arguments.
The adiabatic approximation is one of the main tools for analyzing the solutions of linear sta-
tionary and nonstationary problems in modern mathematical and theoretical physics. Differ-
ent versions of adiabatic approximation are used in problems of molecular physics, solid-state
physics, plasma physics, theory of internal and surface waves in fluids, averaging theory, quan-
tum gravitation theory, etc.

The adiabatic approximation is used in situations in which the study of some classes of
physically interesting wave processes described by a “large” system with N degrees of freedom
can be reduced, on some time intervals, to the study of a simplified “effective” system with
n<N degrees of freedom. In this case, on the one hand, a sufficiently wide range of states
and solutions with some general characteristic properties (but not a set of individual concrete
states or solutions) is considered, and, on the other hand, it is not assumed that all the solu-
tions of the original “large” system can be described in the same way. From a physical point
of view, this possibility is usually ensured by the fact that the problem has different spatial or
spatio-temporal scales, which, from a mathematical point of view, means that there is a small
parameter characterizing the different scales of the problem. As a rule, the different scales are
manifested in different dependences of the coefficients of the original equation or boundary
conditions on various variables (or groups of variables), i.e., on (N −n) “fast” and n “slow”
variables. Thus, it is natural to divide the study of such distinguished wave processes into two
stages: (1) to derive “effective” reduced systems, (2) to find their concrete solutions and then
to reconstruct the total solution describing the entire process. Of course, these considerations
appear in different fields of physics and mechanics; the problem is to realize them in concrete
formulas. Moreover, in each field, its own terminology is used. For example, such reduced sys-
tems correspond to terms in molecular physics, to modes in hydrodynamic problems, to sub-
bands of dimensional quantization in nanophysics, etc. For various reasons, it is convenient
for us to use the terminology accepted in physics of low-dimensional systems.
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In turn, roughly speaking, the idea to derive simplified systems has two stages: (1)
first, after the n above-mentioned degrees of freedom are “frozen” (it is assumed that the
differentiation operators with respect to the slow variables commute with the slow variables),
the operator determining the effective equation can be obtained as an eigenvalue of an auxil-
iary spectral problem with N −n degrees of freedom; realizing this stage, we obtain effective
Hamiltonians (or dispersion relations), well-known in molecular physics; (2) the operator (the
“quantization” or the Peierls substitution) determining the effective reduced equation with n

degrees of freedom is reconstructed simply by taking into account the fact that the differ-
entiation operator with respect to slow variables does not actually commute with the slow
variables. We note that the distinguishing of the “frozen” (slow) variables can be natural and
obvious as, for example, in problems of molecular physics or in mechanical problems with
different spatial scales, but can be more “latent” as in electron waves in crystals and in the
averaging theory. In this case, an additional degree of freedom appears in the regularization
of the problem.

In some problems, it is sufficient to perform the “naive” quantization of the effective
Hamiltonian (of the dispersion relation), but, in many problems, a more accurate analysis is
required and certain difficulties arise (see, e.g., [5, Section 56]. We note that, as a rule, it is
impossible to write the effective reduced equation exactly; the problem is to construct a min-
imally reasonable number of terms in the expansion of the operator in the effective reduced
system, which allows a correct construction of the equation describing a wide range of wave-
lengths. Indeed, the most popular approach in the adiabatic approximation, originating from
the work of Born and Oppenheimer, is based on the assumption that the desired solution
depends smoothly on all the variables. Thus, for example, only the lower energy levels are
usually “grasped” in spectral problems. At the same time, in many physical situations, for
example, in describing the valence electrons in crystals, the higher energy levels are most inter-
esting, but, strictly speaking, they cannot be considered under this approach. In this case, one
can use the semiclassical theory proposed by Maslov, which, however, is based on the assump-
tion that there is a sufficiently rigid relation between the excitation level and the parameter
characterizing the different scales of the problem. From a mathematical point of view, this
means that, in the problem under study, along with the parameter characterizing the differ-
ent scales, which is naturally called an adiabatic parameter, there is another (“semiclassical”)
parameter characterizing the excitation level of the state under study; in this case, the form
of the approximate (asymptotic) solution depends, as a rule, on the relations between these
parameters. This can easily be verified by comparing the averaging method, the Born–Oppen-
heimer method, and the Maslov method, which give solutions with “slow,” “medium,” and
“fast” variations (with respect to the slow variables).

In this paper, we propose an approach based on the above considerations. This approach
allows one, first, to describe all the states listed above, in the range from slowly varying states
to fast or, sometimes, even “superfast” varying states, and, second, to classify them appro-
priately. In particular, this approach explains why the states obtained by the Born–Oppen-
heimer and Maslov methods can be treated as the states on the same subregions (terms)
corresponding to different “longitudinal states.” So the effective reduced equation thus
obtained describes not only the states at the “bottom” of the subregion, but also the states
corresponding to the higher energy levels. We note that, without this reduction, choosing the
subregion for higher energy levels can be a rather complicated problem in itself.

The approach proposed here is based on Maslov’s observation that the problems in which
the adiabatic approximation is used can be interpreted as problems with operator-valued
symbol, and these problems are well known in mathematical physics. This means that the
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operator determining the original “large” system is a function of two groups of operators
with “small” and “large” commutators (or “large” anticommutators, as in the electron-pho-
non interaction problem). The use of the concept proposed in this paper, which is based
on equations with operator-valued symbol, allows one to deal with different linear adiabatic
problems from a unified point of view.

The realization of our approach is based on representing the solution in the form (3.5) and
obtaining the effective reduced equation (3.7), which is a generalization of the Peierls substi-
tution. These formulas, together with the algorithm described in Section 3, give one of the
main results of the present paper. In these constructions, the key role is played by the tech-
niques of noncommuting operators based on elementary notions from the Maslov operator
method. The constructed algorithm allows us, with any prescribed accuracy, to calculate the
operator determining the effective reduced equation (3.7) and the intertwining operator recon-
structing the solution of the original problem from the solution of Equation (3.7). In partic-
ular, the algorithm thus constructed allows one to obtain accurate estimates for the minimal
number of terms necessary to construct the leading part of the asymptotic solution. It should
be noted that, in the reduction procedure, the possible degeneration of the term (the effective
Hamiltonian) must be taken into account. In Sections 4–5, these formulas are illustrated by
several examples from different fields of physics and mathematics. Some heuristic arguments
leading to formulas (3.5) and (3.7) are given in Section 2.

In Section 3, we also show that the “operator separation” of variables can be treated as a
“quantum” (or wave) analog of the procedure of excluding (holonomic) constraints in classi-
cal mechanics ([36, 37] and others). Indeed, the imposed quantum constraints can be treated
as restrictions arising due to the confinement potential in the ambient configuration space. In
this case, it is natural to assume that the “condition of dimensional quantization” is satisfied,
i.e., the wavelength in the directions normal to the manifold corresponding to the degrees of
freedom of the effective system (i.e., the “limit” manifold) is compatible with the “width of
the film” surrounding the limit manifold. Here the most important is the fact justified in this
paper that, excluding the constraints, one can, in general, obtain different effective Hamilto-
nians depending on the energy of the “longitudinal” motion. In the case of fast oscillating
longitudinal states, this leads to different classical Hamiltonians determining the motion on
the “limit manifold.”

The study of solutions of reduced equations on some distinguished subregions has been
the second part of our approach. Depending on the relations between the parameters, this
study can generally be performed by different methods. In Section 5, taking into account the
fact that the problem contains two parameters, an adiabatic and a semiclassical, we classify
the solutions, and this classification shows that the excited states are constructed differently
than the lower states. In the construction of excited states, the momentum in the intertwining
operator cannot be neglected, i.e., the intertwining operator is indeed an operator and cannot
be replaced by a function, as it is usually done in different versions of the Born–Oppenheimer
method (in particular, in solid-state physics). The existence of the momentum operator in the
intertwining operator shows that, from the viewpoint of the Born–Oppenheimer method for
excited states, a “distortion” of the term occurs. For fast varying solutions, the main methods
in this case are the semiclassical approximation and the WKB-method; if there are turning
points and caustics, the WKB–Maslov method is used. It is well known that, when apply-
ing this method, one must pass to classical Hamiltonian systems. One of the elementary, but
important, consequences is the fact that the classical systems can be different for different
excitation levels and the “small” terms in the original equation can significantly affect the
semiclassical characteristics for some values of the longitudinal energies. In particular, in the
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case of a degenerate adiabatic effective Hamiltonian, the degeneration can be removed in the
semiclassical approximation; in this case, the adiabatic term “splits” into several semiclassical
terms (Hamiltonians). We have considered an example (nanotubes) and have shown that the
interaction of spin with the confinement potential can change the classical trajectories of the
longitudinal motion.

As was already noted, the possibility to obtain numerical solutions, graphs, etc. at this
stage significantly depends on the specific character of a concrete problem and requires sepa-
rate publications. In the present paper, we briefly describe this procedure for problems related
to the modern field of nanophysics and restrict ourselves to rather general formulas. In Sec-
tion 5, we have derived some simplest conclusions for models arising in nanophysics. In par-
ticular, we showed that, placing nanotubes of various geometry in a constant electric field,
we can model various one-dimensional potentials, for example, “double well” type potentials,
periodic potentials, etc.; the degenerate adiabatic term (for example, in the case of a tube of
circular cross-section) can split into several semiclassical terms (effective Hamiltonians), etc.
The problems concerning detailed studies of how the spin affects classical trajectories, the
electron-density pulsation due to spin, etc. are beyond the scope of this paper.

We believe that the arguments and formulas given in this paper can be helpful in studying
problems arising in solid-state physics, hydrodynamics (waves on water), the theory of shells,
plates, and rods, and in nanophysics. It seems possible that this method can be used in weakly
nonlinear situations.

In conclusion, we make a remark concerning the list of references. As was already noted,
the number of works dealing with the adiabatic approximation and its applications is very
extensive; our list of references does not absolutely pretend to be complete; here we present
only several papers that are to some extent close to our approach.
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